2023-03-07 18:01:45 +01:00

433 lines
14 KiB
C

/**
******************************************************************************
* @file Examples_MIX/TIM/TIM_6Steps/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F3xx I2C HAL and LL API
* to transmit and receive a data buffer with a communication process
* based on IT transfer.
* The communication is done using 1 Board.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_MIX_Examples
* @{
*/
/** @addtogroup TIM_6Steps
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Step Index */
__IO uint32_t uwStep = 0;
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Output Compare Configuration Structure declaration */
TIM_OC_InitTypeDef sConfig;
/* Timer Break Configuration Structure declaration */
TIM_BreakDeadTimeConfigTypeDef sConfigBK;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 64 MHz */
SystemClock_Config();
/* Configure LED2 */
BSP_LED_Init(LED2);
/*##-1- Configure the TIM peripheral #######################################*/
/*----------------------------------------------------------------------------
The stm32f3xx TIM1 peripheral offers the possibility to program in advance the
configuration for the next TIM1 outputs behaviour (step) and change the configuration
of all the channels at the same time. This operation is possible when the COM
(commutation) event is used.
The COM event can be generated by software by setting the COM bit in the TIM1_EGR
register or by hardware (on TRC rising edge).
In this example, a software COM event is generated each 1 ms: using the SysTick
interrupt.
The TIM1 is configured in Timing Mode, each time a COM event occurs, a new TIM1
configuration will be set in advance.
----------------------------------------------------------------------------*/
/* Initialize TIMx peripheral as follow:
+ Prescaler = 0
+ Period = 4095
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Instance = TIM1;
TimHandle.Init.Period = 4095;
TimHandle.Init.Prescaler = 0;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.RepetitionCounter = 0;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_OC_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the output channels ######################################*/
/* Common configuration for all channels */
sConfig.OCMode = TIM_OCMODE_TIMING;
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfig.OCIdleState = TIM_OCIDLESTATE_SET;
sConfig.OCNIdleState = TIM_OCNIDLESTATE_SET;
sConfig.OCFastMode = TIM_OCFAST_DISABLE;
/* Set the pulse value for channel 1 */
sConfig.Pulse = 2047;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Set the pulse value for channel 2 */
sConfig.Pulse = 1023;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Set the pulse value for channel 3 */
sConfig.Pulse = 511;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Configure the Break stage ##########################################*/
sConfigBK.OffStateRunMode = TIM_OSSR_ENABLE;
sConfigBK.OffStateIDLEMode = TIM_OSSI_ENABLE;
sConfigBK.LockLevel = TIM_LOCKLEVEL_OFF;
sConfigBK.BreakState = TIM_BREAK_ENABLE;
sConfigBK.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sConfigBK.AutomaticOutput = TIM_AUTOMATICOUTPUT_ENABLE;
sConfigBK.DeadTime = 1;
if(HAL_TIMEx_ConfigBreakDeadTime(&TimHandle, &sConfigBK) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-4- Configure the commutation event: software event ####################*/
HAL_TIMEx_ConfigCommutEvent_IT(&TimHandle, TIM_TS_NONE, TIM_COMMUTATION_SOFTWARE);
/*##-5- Start signals generation ###########################################*/
/*--------------------------------------------------------------------------*/
/* Start channel 1 */
if(HAL_TIM_OC_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Start channel 1N */
if(HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* Start channel 2 */
if(HAL_TIM_OC_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Start channel 2N */
if(HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* Start channel 3 */
if(HAL_TIM_OC_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Start channel 3N */
if(HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*--------------------------------------------------------------------------*/
/* Infinite loop */
while(1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 64000000
* HCLK(Hz) = 64000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* PLLMUL = RCC_PLL_MUL16 (16)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* HSI Oscillator already ON after system reset, activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Error if LED2 is slowly blinking (1 sec. period) */
while(1)
{
BSP_LED_Toggle(LED2);
HAL_Delay(1000);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief Commutation event callback
* @param None
* @retval None
*/
void TimerCommutationEvent_Callback(void)
{
/* Entry state */
if (uwStep == 0)
{
/* Initial Step Configuration (executed only once) ---------------------- */
/* Channel1 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM1);
/* Channel3 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1 |
LL_TIM_CHANNEL_CH3N);
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH1N |
LL_TIM_CHANNEL_CH2 |
LL_TIM_CHANNEL_CH2N |
LL_TIM_CHANNEL_CH3);
uwStep = 1;
}
if (uwStep == 1)
{
/* Next step: Step 1 Configuration -------------------------------------- */
/* Channel1 configuration */
/* Same configuration as the previous step */
/* Channel2 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH2, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH2N);
/* Channel3 configuration */
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
uwStep++;
}
else if (uwStep == 2)
{
/* Next step: Step 2 Configuration -------------------------------------- */
/* Channel2 configuration */
/* Same configuration as the previous step */
/* Channel3 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3);
/* Channel1 configuration */
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH1);
uwStep++;
}
else if (uwStep == 3)
{
/* Next step: Step 3 Configuration -------------------------------------- */
/* Channel3 configuration */
/* Same configuration as the previous step */
/* Channel2 configuration */
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH2N);
/* Channel1 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1N);
uwStep++;
}
else if (uwStep == 4)
{
/* Next step: Step 4 Configuration -------------------------------------- */
/* Channel3 configuration */
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH3);
/* Channel1 configuration */
/* Same configuration as the previous step */
/* Channel2 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH2, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH2);
uwStep++;
}
else if (uwStep == 5)
{
/* Next step: Step 5 Configuration -------------------------------------- */
/* Channel3 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
/* Channel1 configuration */
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH1N);
/* Channel2 configuration */
/* Same configuration as the previous step */
uwStep++;
}
else
{
/* Next step: Step 6 Configuration -------------------------------------- */
/* Channel1 configuration */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1);
/* Channel3 configuration */
/* Same configuration as the previous step */
/* Channel2 configuration */
LL_TIM_CC_DisableChannel(TIM1, LL_TIM_CHANNEL_CH2);
uwStep = 1;
}
}
/**
* @}
*/
/**
* @}
*/