/** ****************************************************************************** * @file TIM/TIM_OCToggle/Src/main.c * @author MCD Application Team * @brief This example shows how to configure the Timer to generate four different * signals with four different frequencies. ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F3xx_HAL_Examples * @{ */ /** @addtogroup TIM_OCToggle * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ __IO uint32_t uhCCR1_Val = 40961; __IO uint32_t uhCCR2_Val = 20480; __IO uint32_t uhCCR3_Val = 10240; __IO uint32_t uhCCR4_Val = 5120; uint32_t uhCapture = 0; /* Timer handler declaration */ TIM_HandleTypeDef TimHandle; /* Timer Output Compare Configuration Structure declaration */ TIM_OC_InitTypeDef sConfig; /* Counter Prescaler value */ uint32_t uwPrescalerValue = 0; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F3xx HAL library initialization: - Configure the Flash prefetch - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- TIM1 Configuration: Output Compare Toggle Mode: To get TIM1 counter clock at 16 MHz, the prescaler is computed as follows: Prescaler = (TIM1CLK / TIM1 counter clock) - 1 Prescaler = (SystemCoreClock /16000000) - 1 CC1 update rate = TIM1 counter clock / uhCCR1_Val = 16 MHz/40961 = 390.615 Hz ==> So the TIM1 Channel 1 generates a periodic signal with a frequency equal to 195.307 Hz. CC2 update rate = TIM1 counter clock / uhCCR2_Val = 16 MHz/20480 = 781.25 Hz ==> So the TIM1 Channel 2 generates a periodic signal with a frequency equal to 390.625 Hz. CC3 update rate = TIM1 counter clock / uhCCR3_Val = 16 MHz/10240 = 1562.5 Hz ==> So the TIM1 Channel 3 generates a periodic signal with a frequency equal to 781.25 Hz. CC4 update rate = TIM1 counter clock / uhCCR4_Val = 16 MHz/5120 = 3125 Hz ==> So the TIM1 Channel 4 generates a periodic signal with a frequency equal to 1562.5 Hz. --------------------------------------------------------------------------- */ /* Compute the prescaler value to have TIM1 counter clock equal to 16 MHz */ uwPrescalerValue = (uint32_t)((SystemCoreClock / 16000000) - 1); TimHandle.Instance = TIM1; TimHandle.Init.Period = 65535; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if(HAL_TIM_OC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Output Compare channels ##############################*/ /* Common configuration for all channels */ sConfig.OCMode = TIM_OCMODE_TOGGLE; sConfig.OCPolarity = TIM_OCPOLARITY_LOW; /* Output Compare Toggle Mode configuration: Channel1 */ sConfig.Pulse = uhCCR1_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Output Compare Toggle Mode configuration: Channel2 */ sConfig.Pulse = uhCCR2_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Output Compare Toggle Mode configuration: Channel3 */ sConfig.Pulse = uhCCR3_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Output Compare Toggle Mode configuration: Channel4 */ sConfig.Pulse = uhCCR4_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Start signals generation #######################################*/ /* Start channel 1 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Start channel 2 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Start channel 3 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Start channel 4 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_4) != HAL_OK) { /* Starting Error */ Error_Handler(); } while (1) {} } /** * @brief Output Compare callback in non blocking mode * @param htim : TIM OC handle * @retval None */ void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) { /* TIM1_CH1 toggling with frequency = 195.307 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_1, (uhCapture + uhCCR1_Val)); } /* TIM1_CH2 toggling with frequency = 390.625 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_2, (uhCapture + uhCCR2_Val)); } /* TIM1_CH3 toggling with frequency = 781.25 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_3) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_3); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_3, (uhCapture + uhCCR3_Val)); } /* TIM1_CH4 toggling with frequency = 1562.5 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_4); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_4, (uhCapture + uhCCR4_Val)); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSI Frequency(Hz) = 8000000 * PREDIV = RCC_PREDIV_DIV2 (2) * PLLMUL = RCC_PLL_MUL16 (16) * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* HSI Oscillator already ON after system reset, activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/