1520 lines
45 KiB
C
Raw Normal View History

2019-05-15 10:57:06 +01:00
/**
******************************************************************************
* @file stm32303e_eval.c
* @author MCD Application Team
* @brief This file provides a set of firmware functions to manage Leds,
* push-button and COM ports
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32303e_eval.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32303E_EVAL
* @brief This file provides firmware functions to manage Leds, push-buttons,
* COM ports, SD card on SPI and temperature sensor (TS751) available on
* STM32303E-EVAL evaluation board from STMicroelectronics.
* @{
*/
/** @addtogroup STM32303E_EVAL_Common
* @{
*/
/** @addtogroup STM32303E_EVAL_Private_Constants
* @{
*/
/* LINK LCD */
#define START_BYTE 0x70
#define SET_INDEX 0x00
#define READ_STATUS 0x01
#define LCD_WRITE_REG 0x02
#define LCD_READ_REG 0x03
/* LINK SD Card */
#define SD_DUMMY_BYTE 0xFF
#define SD_NO_RESPONSE_EXPECTED 0x80
/* LINK EEPROM SPI */
#define EEPROM_CMD_WREN 0x06 /*!< Write enable instruction */
#define EEPROM_CMD_WRDI 0x04 /*!< Write disable instruction */
#define EEPROM_CMD_RDSR 0x05 /*!< Read Status Register instruction */
#define EEPROM_CMD_WRSR 0x01 /*!< Write Status Register instruction */
#define EEPROM_CMD_WRITE 0x02 /*!< Write to Memory instruction */
#define EEPROM_CMD_READ 0x03 /*!< Read from Memory instruction */
#define EEPROM_WIP_FLAG 0x01 /*!< Write In Progress (WIP) flag */
/**
* @brief STM32303E EVAL BSP Driver version number V2.1.2
*/
#define __STM32303E_EVAL_BSP_VERSION_MAIN (0x02) /*!< [31:24] main version */
#define __STM32303E_EVAL_BSP_VERSION_SUB1 (0x01) /*!< [23:16] sub1 version */
#define __STM32303E_EVAL_BSP_VERSION_SUB2 (0x02) /*!< [15:8] sub2 version */
#define __STM32303E_EVAL_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM32303E_EVAL_BSP_VERSION ((__STM32303E_EVAL_BSP_VERSION_MAIN << 24)\
|(__STM32303E_EVAL_BSP_VERSION_SUB1 << 16)\
|(__STM32303E_EVAL_BSP_VERSION_SUB2 << 8 )\
|(__STM32303E_EVAL_BSP_VERSION_RC))
/**
* @}
*/
/** @addtogroup STM32303E_EVAL_Private_Variables
* @{
*/
/**
* @brief LED variables
*/
GPIO_TypeDef* LED_PORT[LEDn] = {LED1_GPIO_PORT,
LED2_GPIO_PORT,
LED3_GPIO_PORT,
LED4_GPIO_PORT};
const uint16_t LED_PIN[LEDn] = {LED1_PIN,
LED2_PIN,
LED3_PIN,
LED4_PIN};
/**
* @brief BUTTON variables
*/
GPIO_TypeDef* BUTTON_PORT[BUTTONn] = {KEY_BUTTON_GPIO_PORT,
SEL_JOY_GPIO_PORT,
LEFT_JOY_GPIO_PORT,
RIGHT_JOY_GPIO_PORT,
DOWN_JOY_GPIO_PORT,
UP_JOY_GPIO_PORT};
const uint16_t BUTTON_PIN[BUTTONn] = {KEY_BUTTON_PIN,
SEL_JOY_PIN,
LEFT_JOY_PIN,
RIGHT_JOY_PIN,
DOWN_JOY_PIN,
UP_JOY_PIN};
const uint8_t BUTTON_IRQn[BUTTONn] = {KEY_BUTTON_EXTI_IRQn,
SEL_JOY_EXTI_IRQn,
LEFT_JOY_EXTI_IRQn,
RIGHT_JOY_EXTI_IRQn,
DOWN_JOY_EXTI_IRQn,
UP_JOY_EXTI_IRQn};
/**
* @brief JOYSTICK variables
*/
GPIO_TypeDef* JOY_PORT[JOYn] = {SEL_JOY_GPIO_PORT,
LEFT_JOY_GPIO_PORT,
RIGHT_JOY_GPIO_PORT,
DOWN_JOY_GPIO_PORT,
UP_JOY_GPIO_PORT};
const uint16_t JOY_PIN[JOYn] = {SEL_JOY_PIN,
LEFT_JOY_PIN,
RIGHT_JOY_PIN,
DOWN_JOY_PIN,
UP_JOY_PIN};
const uint8_t JOY_IRQn[JOYn] = {SEL_JOY_EXTI_IRQn,
LEFT_JOY_EXTI_IRQn,
RIGHT_JOY_EXTI_IRQn,
DOWN_JOY_EXTI_IRQn,
UP_JOY_EXTI_IRQn};
/**
* @brief COM variables
*/
USART_TypeDef* COM_USART[COMn] = {EVAL_COM1};
GPIO_TypeDef* COM_TX_PORT[COMn] = {EVAL_COM1_TX_GPIO_PORT};
GPIO_TypeDef* COM_RX_PORT[COMn] = {EVAL_COM1_RX_GPIO_PORT};
const uint16_t COM_TX_PIN[COMn] = {EVAL_COM1_TX_PIN};
const uint16_t COM_RX_PIN[COMn] = {EVAL_COM1_RX_PIN};
const uint16_t COM_TX_AF[COMn] = {EVAL_COM1_TX_AF};
const uint16_t COM_RX_AF[COMn] = {EVAL_COM1_RX_AF};
/**
* @brief BUS variables
*/
#ifdef HAL_SPI_MODULE_ENABLED
uint32_t SpixTimeout = EVAL_SPIx_TIMEOUT_MAX; /*<! Value of Timeout when SPI communication fails */
static SPI_HandleTypeDef heval_Spi;
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
uint32_t I2cxTimeout = EVAL_I2Cx_TIMEOUT_MAX; /*<! Value of Timeout when I2C communication fails */
I2C_HandleTypeDef heval_I2c;
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM32303E_EVAL_BUS Bus Operation functions
* @{
*/
/* I2Cx bus function */
#ifdef HAL_I2C_MODULE_ENABLED
/* Link function for I2C EEPROM peripheral */
static void I2Cx_Init(void);
static void I2Cx_WriteData(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t Value);
static HAL_StatusTypeDef I2Cx_WriteBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length);
static uint8_t I2Cx_ReadData(uint16_t Addr, uint8_t Reg, uint16_t RegSize);
static HAL_StatusTypeDef I2Cx_ReadBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length);
static HAL_StatusTypeDef I2Cx_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
static void I2Cx_Error (void);
static void I2Cx_MspInit(I2C_HandleTypeDef *hi2c);
/* Link function for EEPROM peripheral over I2C */
void EEPROM_I2C_IO_Init(void);
HAL_StatusTypeDef EEPROM_I2C_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_I2C_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_I2C_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
/* Link function for Temperature Sensor peripheral */
void TSENSOR_IO_Init(void);
void TSENSOR_IO_Write(uint16_t DevAddress, uint8_t* pBuffer, uint8_t WriteAddr, uint16_t Length);
void TSENSOR_IO_Read(uint16_t DevAddress, uint8_t* pBuffer, uint8_t ReadAddr, uint16_t Length);
uint16_t TSENSOR_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
/* Link function for Audio Codec peripheral */
void AUDIO_IO_Init(void);
void AUDIO_IO_DeInit(void);
void AUDIO_IO_Write(uint16_t DevAddress, uint8_t Reg, uint8_t Value);
uint8_t AUDIO_IO_Read(uint16_t DevAddress, uint8_t Reg);
void AUDIO_IO_Delay(uint32_t delay);
#endif /* HAL_I2C_MODULE_ENABLED */
/* SPIx bus function */
#ifdef HAL_SPI_MODULE_ENABLED
static void SPIx_Init(void);
static void SPIx_Write(uint8_t Value);
static uint32_t SPIx_Read(void);
static void SPIx_Error (void);
static void SPIx_MspInit(SPI_HandleTypeDef *hspi);
/* Link function for LCD peripheral over SPI */
void LCD_IO_Init(void);
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size);
void LCD_IO_WriteReg(uint8_t Reg);
uint16_t LCD_IO_ReadData(uint16_t Reg);
void LCD_Delay (uint32_t delay);
/* Link function for EEPROM peripheral over SPI */
void EEPROM_SPI_IO_Init(void);
void EEPROM_SPI_IO_WriteByte(uint8_t Data);
uint8_t EEPROM_SPI_IO_ReadByte(void);
HAL_StatusTypeDef EEPROM_SPI_IO_WriteData(uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_SPI_IO_ReadData(uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_SPI_IO_WaitEepromStandbyState(void);
/* Link functions for SD Card peripheral over SPI */
void SD_IO_Init(void);
HAL_StatusTypeDef SD_IO_WriteCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Response);
HAL_StatusTypeDef SD_IO_WaitResponse(uint8_t Response);
void SD_IO_WriteDummy(void);
void SD_IO_WriteByte(uint8_t Data);
uint8_t SD_IO_ReadByte(void);
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/** @addtogroup STM32303E_EVAL_Exported_Functions
* @{
*/
/**
* @brief This method returns the STM32303E EVAL BSP Driver revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t BSP_GetVersion(void)
{
return __STM32303E_EVAL_BSP_VERSION;
}
/**
* @brief Configures LED GPIO.
* @param Led Specifies the Led to be configured.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Init(Led_TypeDef Led)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Enable the GPIO_LED clock */
LEDx_GPIO_CLK_ENABLE(Led);
/* Configure the GPIO_LED pin */
GPIO_InitStructure.Pin = LED_PIN[Led];
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LED_PORT[Led], &GPIO_InitStructure);
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Turns selected LED On.
* @param Led Specifies the Led to be set on.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_On(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Turns selected LED Off.
* @param Led Specifies the Led to be set off.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Off(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Toggles the selected LED.
* @param Led Specifies the Led to be toggled.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Toggle(Led_TypeDef Led)
{
HAL_GPIO_TogglePin(LED_PORT[Led], LED_PIN[Led]);
}
/**
* @brief Configures push button GPIO and EXTI Line.
* @param Button Button to be configured.
* This parameter can be one of the following values:
* @arg BUTTON_KEY: Key Push Button
* @arg BUTTON_SEL : Sel Push Button on Joystick
* @arg BUTTON_LEFT : Left Push Button on Joystick
* @arg BUTTON_RIGHT : Right Push Button on Joystick
* @arg BUTTON_DOWN : Down Push Button on Joystick
* @arg BUTTON_UP : Up Push Button on Joystick
* @param Button_Mode Button mode requested.
* This parameter can be one of the following values:
* @arg BUTTON_MODE_GPIO: Button will be used as simple IO
* @arg BUTTON_MODE_EXTI: Button will be connected to EXTI line
* with interrupt generation capability
* @retval None
*/
void BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef Button_Mode)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Enable the corresponding Push Button clock */
BUTTONx_GPIO_CLK_ENABLE(Button);
/* Configure Push Button pin as input */
GPIO_InitStructure.Pin = BUTTON_PIN[Button];
GPIO_InitStructure.Pull = GPIO_PULLDOWN;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
if (Button_Mode == BUTTON_MODE_GPIO)
{
/* Configure Button pin as input */
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(BUTTON_PORT[Button], &GPIO_InitStructure);
}
if (Button_Mode == BUTTON_MODE_EXTI)
{
if(Button == BUTTON_KEY)
{
/* Configure Key Push Button pin as input with External interrupt, falling edge */
GPIO_InitStructure.Mode = GPIO_MODE_IT_FALLING;
}
else
{
/* Configure Joystick Push Button pin as input with External interrupt, rising edge */
GPIO_InitStructure.Mode = GPIO_MODE_IT_RISING;
}
HAL_GPIO_Init(BUTTON_PORT[Button], &GPIO_InitStructure);
/* Enable and set Button EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(BUTTON_IRQn[Button]), 0x0F, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(BUTTON_IRQn[Button]));
}
}
/**
* @brief Returns the selected button state.
* @param Button Button to be checked.
* This parameter can be one of the following values:
* @arg BUTTON_KEY: Key Push Button
* @retval The Button GPIO pin value
*/
uint32_t BSP_PB_GetState(Button_TypeDef Button)
{
return HAL_GPIO_ReadPin(BUTTON_PORT[Button], BUTTON_PIN[Button]);
}
/**
* @brief Configures all button of the joystick in GPIO or EXTI modes.
* @param Joy_Mode Joystick mode.
* This parameter can be one of the following values:
* @arg JOY_MODE_GPIO: Joystick pins will be used as simple IOs
* @arg JOY_MODE_EXTI: Joystick pins will be connected to EXTI line
* with interrupt generation capability
* @retval HAL_OK: if all initializations are OK. Other value if error.
*/
uint8_t BSP_JOY_Init(JOYMode_TypeDef Joy_Mode)
{
JOYState_TypeDef JoyKey;
GPIO_InitTypeDef GPIO_InitStructure;
/* Initialized the Joystick. */
for(JoyKey = JOY_SEL; JoyKey < (JOY_SEL+JOYn) ; JoyKey++)
{
/* Enable the JOY clock */
JOYx_GPIO_CLK_ENABLE(JoyKey);
GPIO_InitStructure.Pin = JOY_PIN[JoyKey];
GPIO_InitStructure.Pull = GPIO_PULLDOWN;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
if (Joy_Mode == JOY_MODE_GPIO)
{
/* Configure Joy pin as input */
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(JOY_PORT[JoyKey], &GPIO_InitStructure);
}
if (Joy_Mode == JOY_MODE_EXTI)
{
/* Configure Joy pin as input with External interrupt */
GPIO_InitStructure.Mode = GPIO_MODE_IT_RISING;
HAL_GPIO_Init(JOY_PORT[JoyKey], &GPIO_InitStructure);
/* Enable and set Joy EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(JOY_IRQn[JoyKey]), 0x0F, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(JOY_IRQn[JoyKey]));
}
}
return HAL_OK;
}
/**
* @brief Returns the current joystick status.
* @retval Code of the joystick key pressed
* This code can be one of the following values:
* @arg JOY_NONE
* @arg JOY_SEL
* @arg JOY_DOWN
* @arg JOY_LEFT
* @arg JOY_RIGHT
* @arg JOY_UP
* @arg JOY_NONE
*/
JOYState_TypeDef BSP_JOY_GetState(void)
{
JOYState_TypeDef JoyKey;
for(JoyKey = JOY_SEL; JoyKey < (JOY_SEL+JOYn) ; JoyKey++)
{
if(HAL_GPIO_ReadPin(JOY_PORT[JoyKey], JOY_PIN[JoyKey]) == GPIO_PIN_SET)
{
/* Return Code Joystick key pressed */
return JoyKey;
}
}
/* No Joystick key pressed */
return JOY_NONE;
}
#if defined(HAL_UART_MODULE_ENABLED)
/**
* @brief Configures COM port.
* @param COM Specifies the COM port to be configured.
* This parameter can be one of following parameters:
* @arg COM1
* @param huart pointer to a UART_HandleTypeDef structure that
* contains the configuration information for the specified UART peripheral.
* @retval None
*/
void BSP_COM_Init(COM_TypeDef COM, UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Enable GPIO clock */
COMx_TX_GPIO_CLK_ENABLE(COM);
COMx_RX_GPIO_CLK_ENABLE(COM);
/* Enable USART clock */
COMx_CLK_ENABLE(COM);
/* Configure USART Tx as alternate function push-pull */
GPIO_InitStructure.Pin = COM_TX_PIN[COM];
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Alternate = COM_TX_AF[COM];
HAL_GPIO_Init(COM_TX_PORT[COM], &GPIO_InitStructure);
/* Configure USART Rx as alternate function push-pull */
GPIO_InitStructure.Pin = COM_RX_PIN[COM];
GPIO_InitStructure.Alternate = COM_RX_AF[COM];
HAL_GPIO_Init(COM_RX_PORT[COM], &GPIO_InitStructure);
/* USART configuration */
huart->Instance = COM_USART[COM];
HAL_UART_Init(huart);
}
#endif /* HAL_UART_MODULE_ENABLED) */
/**
* @}
*/
/** @addtogroup STM32303E_EVAL_BUS
* @{
*/
/*******************************************************************************
BUS OPERATIONS
*******************************************************************************/
#ifdef HAL_I2C_MODULE_ENABLED
/******************************* I2C Routines**********************************/
/**
* @brief Eval I2Cx MSP Initialization
* @param hi2c I2C handle
* @retval None
*/
static void I2Cx_MspInit(I2C_HandleTypeDef *hi2c)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_PeriphCLKInitTypeDef RCC_PeriphCLKInitStruct;
if (hi2c->Instance == EVAL_I2Cx)
{
/*##-1- Configure the Eval I2C clock source. The clock is derived from the SYSCLK #*/
RCC_PeriphCLKInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2C2;
RCC_PeriphCLKInitStruct.I2c2ClockSelection = RCC_I2C2CLKSOURCE_SYSCLK;
HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphCLKInitStruct);
/*##-2- Configure the GPIOs ################################################*/
/* Enable GPIO clock */
EVAL_I2Cx_SDA_GPIO_CLK_ENABLE();
EVAL_I2Cx_SCL_GPIO_CLK_ENABLE();
/* Configure I2C Tx as alternate function */
GPIO_InitStructure.Pin = EVAL_I2Cx_SCL_PIN;
GPIO_InitStructure.Mode = GPIO_MODE_AF_OD;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStructure.Alternate = EVAL_I2Cx_SCL_SDA_AF;
HAL_GPIO_Init(EVAL_I2Cx_SCL_GPIO_PORT, &GPIO_InitStructure);
/* Configure I2C Rx as alternate function */
GPIO_InitStructure.Pin = EVAL_I2Cx_SDA_PIN;
HAL_GPIO_Init(EVAL_I2Cx_SDA_GPIO_PORT, &GPIO_InitStructure);
/*##-3- Configure the Eval I2Cx peripheral #######################################*/
/* Enable Eval_I2Cx clock */
EVAL_I2Cx_CLK_ENABLE();
/* Force the I2C Periheral Clock Reset */
EVAL_I2Cx_FORCE_RESET();
/* Release the I2C Periheral Clock Reset */
EVAL_I2Cx_RELEASE_RESET();
/* Enable and set Eval I2Cx Interrupt to the highest priority */
HAL_NVIC_SetPriority(EVAL_I2Cx_EV_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(EVAL_I2Cx_EV_IRQn);
/* Enable and set Eval I2Cx Interrupt to the highest priority */
HAL_NVIC_SetPriority(EVAL_I2Cx_ER_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(EVAL_I2Cx_ER_IRQn);
}
}
/**
* @brief Eval I2Cx Bus initialization
* @retval None
*/
static void I2Cx_Init(void)
{
if(HAL_I2C_GetState(&heval_I2c) == HAL_I2C_STATE_RESET)
{
heval_I2c.Instance = EVAL_I2Cx;
heval_I2c.Init.Timing = EVAL_I2Cx_TIMING;
heval_I2c.Init.OwnAddress1 = 0;
heval_I2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
heval_I2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
heval_I2c.Init.OwnAddress2 = 0;
heval_I2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
heval_I2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
/* Init the I2C */
I2Cx_MspInit(&heval_I2c);
HAL_I2C_Init(&heval_I2c);
}
}
/**
* @brief Write a value in a register of the device through BUS.
* @param Addr Device address on BUS Bus.
* @param Reg The target register address to write
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @param Value The target register value to be written
* @retval None
*/
static void I2Cx_WriteData(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, RegSize, &Value, 1, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the BUS */
I2Cx_Error();
}
}
/**
* @brief Write a value in a register of the device through BUS.
* @param Addr Device address on BUS Bus.
* @param Reg The target register address to write
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @param pBuffer The target register value to be written
* @param Length buffer size to be written
* @retval None
*/
static HAL_StatusTypeDef I2Cx_WriteBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, RegSize, pBuffer, Length, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the BUS */
I2Cx_Error();
}
return status;
}
/**
* @brief Read a register of the device through BUS
* @param Addr Device address on BUS
* @param Reg The target register address to read
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @retval read register value
*/
static uint8_t I2Cx_ReadData(uint16_t Addr, uint8_t Reg, uint16_t RegSize)
{
HAL_StatusTypeDef status = HAL_OK;
uint8_t value = 0;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, Reg, RegSize, &value, 1, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the BUS */
I2Cx_Error();
}
return value;
}
/**
* @brief Reads multiple data on the BUS.
* @param Addr I2C Address
* @param Reg Reg Address
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @param pBuffer pointer to read data buffer
* @param Length length of the data
* @retval 0 if no problems to read multiple data
*/
static HAL_StatusTypeDef I2Cx_ReadBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, (uint16_t)Reg, RegSize, pBuffer, Length, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the BUS */
I2Cx_Error();
}
return status;
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress Target device address
* @param Trials Number of trials
* @retval HAL status
*/
static HAL_StatusTypeDef I2Cx_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (HAL_I2C_IsDeviceReady(&heval_I2c, DevAddress, Trials, I2cxTimeout));
}
/**
* @brief Eval I2Cx error treatment function
* @retval None
*/
static void I2Cx_Error (void)
{
/* De-initialize the I2C communication BUS */
HAL_I2C_DeInit(&heval_I2c);
/* Re- Initiaize the I2C communication BUS */
I2Cx_Init();
}
#endif /*HAL_I2C_MODULE_ENABLED*/
/******************************* SPI Routines**********************************/
#ifdef HAL_SPI_MODULE_ENABLED
/**
* @brief Initializes SPI MSP.
* @retval None
*/
static void SPIx_MspInit(SPI_HandleTypeDef *hspi)
{
GPIO_InitTypeDef GPIO_InitStructure;
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
EVAL_SPIx_SCK_GPIO_CLK_ENABLE();
EVAL_SPIx_MISO_MOSI_GPIO_CLK_ENABLE();
/* configure SPI SCK */
GPIO_InitStructure.Pin = EVAL_SPIx_SCK_PIN;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_PULLDOWN;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStructure.Alternate = EVAL_SPIx_SCK_AF;
HAL_GPIO_Init(EVAL_SPIx_SCK_GPIO_PORT, &GPIO_InitStructure);
/* configure SPI MISO and MOSI */
GPIO_InitStructure.Pin = (EVAL_SPIx_MISO_PIN | EVAL_SPIx_MOSI_PIN);
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStructure.Alternate = EVAL_SPIx_MISO_MOSI_AF;
HAL_GPIO_Init(EVAL_SPIx_MISO_MOSI_GPIO_PORT, &GPIO_InitStructure);
/*** Configure the SPI peripheral ***/
/* Enable SPI clock */
EVAL_SPIx_CLK_ENABLE();
}
/**
* @brief Initializes SPI HAL.
* @retval None
*/
static void SPIx_Init(void)
{
if(HAL_SPI_GetState(&heval_Spi) == HAL_SPI_STATE_RESET)
{
/* SPI Config */
heval_Spi.Instance = EVAL_SPIx;
/* SPI baudrate is set to 18 MHz (PCLK2/SPI_BaudRatePrescaler = 36/2 = 18 MHz) */
heval_Spi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
heval_Spi.Init.Direction = SPI_DIRECTION_2LINES;
heval_Spi.Init.CLKPhase = SPI_PHASE_1EDGE;
heval_Spi.Init.CLKPolarity = SPI_POLARITY_LOW;
heval_Spi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
heval_Spi.Init.CRCPolynomial = 7;
heval_Spi.Init.DataSize = SPI_DATASIZE_8BIT;
heval_Spi.Init.FirstBit = SPI_FIRSTBIT_MSB;
heval_Spi.Init.NSS = SPI_NSS_SOFT;
heval_Spi.Init.TIMode = SPI_TIMODE_DISABLE;
heval_Spi.Init.Mode = SPI_MODE_MASTER;
SPIx_MspInit(&heval_Spi);
HAL_SPI_Init(&heval_Spi);
}
}
/**
* @brief SPI Read 4 bytes from device
* @retval Read data
*/
static uint32_t SPIx_Read(void)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t readvalue = 0;
uint32_t writevalue = 0xFFFFFFFF;
status = HAL_SPI_TransmitReceive(&heval_Spi, (uint8_t*) &writevalue, (uint8_t*) &readvalue, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
return readvalue;
}
/**
* @brief SPI Write a byte to device
* @param Value value to be written
* @retval None
*/
static void SPIx_Write(uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_Transmit(&heval_Spi, (uint8_t*) &Value, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI error treatment function
* @retval None
*/
static void SPIx_Error (void)
{
/* De-initialize the SPI communication BUS */
HAL_SPI_DeInit(&heval_Spi);
/* Re- Initiaize the SPI communication BUS */
SPIx_Init();
}
/**
* @}
*/
/** @defgroup STM32303E_EVAL_LINK_OPERATIONS Link Operation functions
* @{
*/
/********************************* LINK LCD ***********************************/
/**
* @brief Configures the LCD_SPI interface.
* @retval None
*/
void LCD_IO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructureure;
/* Configure the LCD Control pins ------------------------------------------*/
LCD_NCS_GPIO_CLK_ENABLE();
/* Configure NCS in Output Push-Pull mode */
GPIO_InitStructureure.Pin = LCD_NCS_PIN;
GPIO_InitStructureure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructureure.Pull = GPIO_NOPULL;
GPIO_InitStructureure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LCD_NCS_GPIO_PORT, &GPIO_InitStructureure);
/* Set or Reset the control line */
LCD_CS_LOW();
LCD_CS_HIGH();
SPIx_Init();
}
/**
* @brief Write register value.
* @param pData Pointer on the register value
* @param Size Size of byte to transmit to the register
* @retval None
*/
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size)
{
uint32_t counter = 0;
/* Reset LCD control line CS */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | LCD_WRITE_REG);
for (counter = Size; counter != 0; counter--)
{
/* Need to invert bytes for LCD*/
SPIx_Write(*(pData+1));
SPIx_Write(*pData);
counter--;
pData += 2;
}
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief register address.
* @param Reg
* @retval None
*/
void LCD_IO_WriteReg(uint8_t Reg)
{
/* Reset LCD control line(/CS) and Send command */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | SET_INDEX);
/* Write 16-bit Reg Index (High Byte is 0) */
SPIx_Write(0x00);
SPIx_Write(Reg);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Read register value.
* @param Reg
* @retval None
*/
uint16_t LCD_IO_ReadData(uint16_t Reg)
{
uint32_t readvalue = 0;
/* Change BaudRate Prescaler 8 for Read */
/* Mean SPI baudrate is set to 72/8 = 9 MHz */
heval_Spi.Instance->CR1 &= 0xFFC7;
heval_Spi.Instance->CR1 |= SPI_BAUDRATEPRESCALER_8;
/* Send Reg value to Read */
LCD_IO_WriteReg(Reg);
/* Reset LCD control line(/CS) and Send command */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | LCD_READ_REG);
/* Read Upper Byte */
SPIx_Write(0xFF);
readvalue = SPIx_Read();
readvalue = readvalue << 8;
readvalue |= SPIx_Read();
/* Recover Baud Rate initial value */
heval_Spi.Instance->CR1 &= 0xFFC7;
heval_Spi.Instance->CR1 |= heval_Spi.Init.BaudRatePrescaler;
HAL_Delay(10);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
return readvalue;
}
/**
* @brief Wait for loop in ms.
* @param Delay in ms.
* @retval None
*/
void LCD_Delay (uint32_t Delay)
{
HAL_Delay(Delay);
}
/******************************** LINK SD Card ********************************/
/**
* @brief Initializes the SD Card and put it into StandBy State (Ready for
* data transfer).
* @retval None
*/
void SD_IO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructureure;
uint8_t counter;
/* SD_CS_GPIO and SD_DETECT_GPIO Periph clock enable */
SD_CS_GPIO_CLK_ENABLE();
SD_DETECT_GPIO_CLK_ENABLE();
/* Configure SD_CS_PIN pin: SD Card CS pin */
GPIO_InitStructureure.Pin = SD_CS_PIN;
GPIO_InitStructureure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructureure.Pull = GPIO_PULLUP;
GPIO_InitStructureure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &GPIO_InitStructureure);
/* Configure SD_DETECT_PIN pin: SD Card detect pin */
GPIO_InitStructureure.Pin = SD_DETECT_PIN;
GPIO_InitStructureure.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStructureure.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SD_DETECT_GPIO_PORT, &GPIO_InitStructureure);
/* Enable and set SD EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority(SD_DETECT_EXTI_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(SD_DETECT_EXTI_IRQn);
/*------------Put SD in SPI mode--------------*/
/* SD SPI Config */
SPIx_Init();
/* SD chip select high */
SD_CS_HIGH();
/* Send dummy byte 0xFF, 10 times with CS high */
/* Rise CS and MOSI for 80 clocks cycles */
for (counter = 0; counter <= 9; counter++)
{
/* Send dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
}
/**
* @brief Writes a byte on the SD.
* @param Data byte to send.
* @retval None
*/
void SD_IO_WriteByte(uint8_t Data)
{
/* Send the byte */
SPIx_Write(Data);
}
/**
* @brief Reads a byte from the SD.
* @retval The received byte.
*/
uint8_t SD_IO_ReadByte(void)
{
uint8_t data = 0;
/* Change BaudRate Prescaler 4 for Read */
/* Mean SPI baudrate is set to 72/4 = 18 MHz */
heval_Spi.Instance->CR1 &= 0xFFC7;
heval_Spi.Instance->CR1 |= SPI_BAUDRATEPRESCALER_4;
/* Get the received data */
data = SPIx_Read();
/* Return the shifted data */
return data;
}
/**
* @brief Sends 5 bytes command to the SD card and get response
* @param Cmd The user expected command to send to SD card.
* @param Arg The command argument.
* @param Crc The CRC.
* @param Response Expected response from the SD card
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef SD_IO_WriteCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Response)
{
uint32_t counter = 0x00;
uint8_t frame[6];
/* Prepare Frame to send */
frame[0] = (Cmd | 0x40); /* Construct byte 1 */
frame[1] = (uint8_t)(Arg >> 24); /* Construct byte 2 */
frame[2] = (uint8_t)(Arg >> 16); /* Construct byte 3 */
frame[3] = (uint8_t)(Arg >> 8); /* Construct byte 4 */
frame[4] = (uint8_t)(Arg); /* Construct byte 5 */
frame[5] = (Crc); /* Construct CRC: byte 6 */
/* SD chip select low */
SD_CS_LOW();
/* Send Frame */
for (counter = 0; counter < 6; counter++)
{
SD_IO_WriteByte(frame[counter]); /* Send the Cmd bytes */
}
if(Response != SD_NO_RESPONSE_EXPECTED)
{
return SD_IO_WaitResponse(Response);
}
return HAL_OK;
}
/**
* @brief Waits response from the SD card
* @param Response Expected response from the SD card
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef SD_IO_WaitResponse(uint8_t Response)
{
uint32_t timeout = 0xFFF;
/* Check if response is got or a timeout is happen */
while ((SD_IO_ReadByte() != Response) && timeout)
{
timeout--;
}
if (timeout == 0)
{
/* After time out */
return HAL_TIMEOUT;
}
else
{
/* Right response got */
return HAL_OK;
}
}
/**
* @brief Sends dummy byte with CS High
* @retval None
*/
void SD_IO_WriteDummy(void)
{
/* SD chip select high */
SD_CS_HIGH();
/* Send Dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
/******************************** LINK EEPROM SPI ********************************/
/**
* @brief Initializes the EEPROM SPI and put it into StandBy State (Ready for
* data transfer).
* @retval None
*/
void EEPROM_SPI_IO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* EEPROM_CS_GPIO Periph clock enable */
EEPROM_CS_GPIO_CLK_ENABLE();
/* Configure EEPROM_CS_PIN pin: EEPROM SPI CS pin */
GPIO_InitStructure.Pin = EEPROM_CS_PIN;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(EEPROM_CS_GPIO_PORT, &GPIO_InitStructure);
/*------------Put EEPROM in SPI mode--------------*/
/* EEPROM SPI Config */
SPIx_Init();
/* EEPROM chip select high */
EEPROM_CS_HIGH();
}
/**
* @brief Write a byte on the EEPROM.
* @param Data byte to send.
* @retval None
*/
void EEPROM_SPI_IO_WriteByte(uint8_t Data)
{
/* Send the byte */
SPIx_Write(Data);
}
/**
* @brief Read a byte from the EEPROM.
* @retval uint8_t (The received byte).
*/
uint8_t EEPROM_SPI_IO_ReadByte(void)
{
uint8_t data = 0;
/* Get the received data */
data = SPIx_Read();
/* Return the shifted data */
return data;
}
/**
* @brief Write data to SPI EEPROM driver
* @param MemAddress Internal memory address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be read
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef EEPROM_SPI_IO_WriteData(uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
/*!< Enable the write access to the EEPROM */
/*!< Select the EEPROM: Chip Select low */
EEPROM_CS_LOW();
/*!< Send "Write Enable" instruction */
SPIx_Write(EEPROM_CMD_WREN);
/*!< Deselect the EEPROM: Chip Select high */
EEPROM_CS_HIGH();
/*!< Select the EEPROM: Chip Select low */
EEPROM_CS_LOW();
/*!< Send "Write to Memory " instruction */
/* Send the byte */
SPIx_Write(EEPROM_CMD_WRITE);
/*!< Send MemAddress high nibble address byte to write to */
SPIx_Write((MemAddress & 0xFF0000) >> 16);
/*!< Send MemAddress medium nibble address byte to write to */
SPIx_Write((MemAddress & 0xFF00) >> 8);
/*!< Send MemAddress low nibble address byte to write to */
SPIx_Write(MemAddress & 0xFF);
/*!< while there is data to be written on the EEPROM */
while ((BufferSize)--)
{
/*!< Send the current byte */
SPIx_Write(*pBuffer);
/*!< Point on the next byte to be written */
pBuffer++;
}
/*!< Deselect the EEPROM: Chip Select high */
EEPROM_CS_HIGH();
/*!< Wait the end of EEPROM writing */
EEPROM_SPI_IO_WaitEepromStandbyState();
/*!< Disable the write access to the EEROM */
EEPROM_CS_LOW();
/*!< Send "Write Disable" instruction */
SPIx_Write(EEPROM_CMD_WRDI);
/*!< Deselect the EEPROM: Chip Select high */
EEPROM_CS_HIGH();
return HAL_OK;
}
/**
* @brief Read data from SPI EEPROM driver
* @param MemAddress Internal memory address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be read
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef EEPROM_SPI_IO_ReadData(uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
/*!< Select the EEPROM: Chip Select low */
EEPROM_CS_LOW();
/*!< Send "Write to Memory " instruction */
SPIx_Write(EEPROM_CMD_READ);
/*!< Send MemAddress high nibble address byte to write to */
SPIx_Write((MemAddress & 0xFF0000) >> 16);
/*!< Send WriteAddr medium nibble address byte to write to */
SPIx_Write((MemAddress & 0xFF00) >> 8);
/*!< Send WriteAddr low nibble address byte to write to */
SPIx_Write(MemAddress & 0xFF);
while ((BufferSize)--) /*!< while there is data to be read */
{
/*!< Read a byte from the EEPROM */
*pBuffer = SPIx_Read();
/*!< Point to the next location where the byte read will be saved */
pBuffer++;
}
/*!< Deselect the EEPROM: Chip Select high */
EEPROM_CS_HIGH();
return HAL_OK;
}
/**
* @brief Wait response from the SPI EEPROM
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef EEPROM_SPI_IO_WaitEepromStandbyState(void)
{
uint32_t timeout = 0xFFFF;
uint32_t eepromstatus;
/*!< Select the EEPROM: Chip Select low */
EEPROM_CS_LOW();
/*!< Send "Read Status Register" instruction */
SPIx_Write(EEPROM_CMD_RDSR);
/*!< Loop as long as the memory is busy with a write cycle */
do
{
/*!< Send a dummy byte to generate the clock needed by the EEPROM
and put the value of the status register in EEPROM Status variable */
eepromstatus = SPIx_Read();
timeout --;
}
while (((eepromstatus & EEPROM_WIP_FLAG) == SET) && timeout); /* Write in progress */
/*!< Deselect the EEPROM: Chip Select high */
EEPROM_CS_HIGH();
if ((eepromstatus & EEPROM_WIP_FLAG) != SET)
{
/* Right response got */
return HAL_OK;
}
else
{
/* After time out */
return HAL_TIMEOUT;
}
}
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
/********************************* LINK I2C EEPROM *****************************/
/**
* @brief Initializes peripherals used by the I2C EEPROM driver.
* @retval None
*/
void EEPROM_I2C_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief Write data to I2C EEPROM driver
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_I2C_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2Cx_WriteBuffer(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Read data from I2C EEPROM driver
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be read
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_I2C_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2Cx_ReadBuffer(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress Target device address
* @param Trials Number of trials
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_I2C_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2Cx_IsDeviceReady(DevAddress, Trials));
}
/********************************* LINK I2C TEMPERATURE SENSOR *****************************/
/**
* @brief Initializes peripherals used by the I2C Temperature Sensor driver.
* @retval None
*/
void TSENSOR_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief Writes one byte to the TSENSOR.
* @param DevAddress Target device address
* @param pBuffer Pointer to data buffer
* @param WriteAddr TSENSOR's internal address to write to.
* @param Length Number of data to write
* @retval None
*/
void TSENSOR_IO_Write(uint16_t DevAddress, uint8_t* pBuffer, uint8_t WriteAddr, uint16_t Length)
{
I2Cx_WriteBuffer(DevAddress, WriteAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, Length);
}
/**
* @brief Reads one byte from the TSENSOR.
* @param DevAddress Target device address
* @param pBuffer pointer to the buffer that receives the data read from the TSENSOR.
* @param ReadAddr TSENSOR's internal address to read from.
* @param Length Number of data to read
* @retval None
*/
void TSENSOR_IO_Read(uint16_t DevAddress, uint8_t* pBuffer, uint8_t ReadAddr, uint16_t Length)
{
I2Cx_ReadBuffer(DevAddress, ReadAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, Length);
}
/**
* @brief Checks if Temperature Sensor is ready for communication.
* @param DevAddress Target device address
* @param Trials Number of trials
* @retval HAL status
*/
uint16_t TSENSOR_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2Cx_IsDeviceReady(DevAddress, Trials));
}
/********************************* LINK AUDIO CODEC ***********************************/
/**
* @brief Initializes peripherals used by the Audio Codec driver.
* @retval None
*/
void AUDIO_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief DeInitializes Audio low level.
* @note This function is intentionally kept empty, user should define it.
*/
void AUDIO_IO_DeInit(void)
{
}
/**
* @brief Writes a single data on the Audio Codec.
* @param DevAddress Target device address
* @param Reg Target Register address
* @param Value Data to be written
* @retval None
*/
void AUDIO_IO_Write(uint16_t DevAddress, uint8_t Reg, uint8_t Value)
{
I2Cx_WriteData(DevAddress, Reg, I2C_MEMADD_SIZE_8BIT, Value);
}
/**
* @brief Reads a single data from the Audio Codec.
* @param DevAddress Target device address
* @param Reg Target Register address
* @retval Data to be read
*/
uint8_t AUDIO_IO_Read(uint16_t DevAddress, uint8_t Reg)
{
uint8_t value;
value = I2Cx_ReadData(DevAddress, Reg, I2C_MEMADD_SIZE_8BIT);
return value;
}
/**
* @brief Wait for loop in ms.
* @param Delay in ms.
* @retval None
*/
void AUDIO_IO_Delay(uint32_t Delay)
{
HAL_Delay(Delay);
}
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/