mirror of
https://github.com/STMicroelectronics/STM32CubeF2.git
synced 2025-05-09 19:29:32 +08:00
2469 lines
77 KiB
C
2469 lines
77 KiB
C
/**
|
||
******************************************************************************
|
||
* @file stm32f2xx_hal_cryp.c
|
||
* @author MCD Application Team
|
||
* @brief CRYP HAL module driver.
|
||
* This file provides firmware functions to manage the following
|
||
* functionalities of the Cryptography (CRYP) peripheral:
|
||
* + Initialization and de-initialization functions
|
||
* + AES processing functions
|
||
* + DES processing functions
|
||
* + TDES processing functions
|
||
* + DMA callback functions
|
||
* + CRYP IRQ handler management
|
||
* + Peripheral State functions
|
||
*
|
||
@verbatim
|
||
==============================================================================
|
||
##### How to use this driver #####
|
||
==============================================================================
|
||
[..]
|
||
The CRYP HAL driver can be used in CRYP IP as follows:
|
||
|
||
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
|
||
(##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
|
||
(##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
|
||
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
|
||
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
|
||
(+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
|
||
(##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
|
||
(+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
|
||
(+++) Configure and enable two DMA streams one for managing data transfer from
|
||
memory to peripheral (input stream) and another stream for managing data
|
||
transfer from peripheral to memory (output stream)
|
||
(+++) Associate the initialized DMA handle to the CRYP DMA handle
|
||
using __HAL_LINKDMA()
|
||
(+++) Configure the priority and enable the NVIC for the transfer complete
|
||
interrupt on the two DMA Streams. The output stream should have higher
|
||
priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
|
||
|
||
(#)Initialize the CRYP according to the specified parameters :
|
||
(##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
|
||
(##) The key size: 128, 192 or 256.
|
||
(##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR.
|
||
(##) The initialization vector (counter). It is not used in ECB mode.
|
||
(##) The key buffer used for encryption/decryption.
|
||
|
||
(#)Three processing (encryption/decryption) functions are available:
|
||
(##) Polling mode: encryption and decryption APIs are blocking functions
|
||
i.e. they process the data and wait till the processing is finished,
|
||
e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
||
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
|
||
i.e. they process the data under interrupt,
|
||
e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
||
(##) DMA mode: encryption and decryption APIs are not blocking functions
|
||
i.e. the data transfer is ensured by DMA,
|
||
e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
||
|
||
(#)When the processing function is called at first time after HAL_CRYP_Init()
|
||
the CRYP peripheral is configured and processes the buffer in input.
|
||
At second call, no need to Initialize the CRYP, user have to get current configuration via
|
||
HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
|
||
new parametres, finally user can start encryption/decryption.
|
||
|
||
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
|
||
|
||
[..]
|
||
The cryptographic processor supports following standards:
|
||
(#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 IP:
|
||
(##)64-bit data block processing
|
||
(##) chaining modes supported :
|
||
(+++) Electronic Code Book(ECB)
|
||
(+++) Cipher Block Chaining (CBC)
|
||
(##) keys length supported :64-bit, 128-bit and 192-bit.
|
||
(#) The advanced encryption standard (AES) supported by CRYP1:
|
||
(##)128-bit data block processing
|
||
(##) chaining modes supported :
|
||
(+++) Electronic Code Book(ECB)
|
||
(+++) Cipher Block Chaining (CBC)
|
||
(+++) Counter mode (CTR)
|
||
(##) keys length Supported :
|
||
(+++) for CRYP1 IP: 128-bit, 192-bit and 256-bit.
|
||
|
||
*** Callback registration ***
|
||
=============================================
|
||
[..]
|
||
The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
|
||
allows the user to configure dynamically the driver callbacks.
|
||
Use Functions @ref HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
|
||
to register an interrupt callback.
|
||
[..]
|
||
Function @ref HAL_CRYP_RegisterCallback() allows to register following callbacks:
|
||
(+) InCpltCallback : Input FIFO transfer completed callback.
|
||
(+) OutCpltCallback : Output FIFO transfer completed callback.
|
||
(+) ErrorCallback : callback for error detection.
|
||
(+) MspInitCallback : CRYP MspInit.
|
||
(+) MspDeInitCallback : CRYP MspDeInit.
|
||
This function takes as parameters the HAL peripheral handle, the Callback ID
|
||
and a pointer to the user callback function.
|
||
[..]
|
||
Use function @ref HAL_CRYP_UnRegisterCallback() to reset a callback to the default
|
||
weak function.
|
||
@ref HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
||
and the Callback ID.
|
||
This function allows to reset following callbacks:
|
||
(+) InCpltCallback : Input FIFO transfer completed callback.
|
||
(+) OutCpltCallback : Output FIFO transfer completed callback.
|
||
(+) ErrorCallback : callback for error detection.
|
||
(+) MspInitCallback : CRYP MspInit.
|
||
(+) MspDeInitCallback : CRYP MspDeInit.
|
||
[..]
|
||
By default, after the @ref HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
|
||
all callbacks are set to the corresponding weak functions :
|
||
examples @ref HAL_CRYP_InCpltCallback() , @ref HAL_CRYP_OutCpltCallback().
|
||
Exception done for MspInit and MspDeInit functions that are
|
||
reset to the legacy weak function in the @ref HAL_CRYP_Init()/ @ref HAL_CRYP_DeInit() only when
|
||
these callbacks are null (not registered beforehand).
|
||
if not, MspInit or MspDeInit are not null, the @ref HAL_CRYP_Init() / @ref HAL_CRYP_DeInit()
|
||
keep and use the user MspInit/MspDeInit functions (registered beforehand)
|
||
|
||
Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
|
||
Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
|
||
in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
|
||
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
||
In that case first register the MspInit/MspDeInit user callbacks
|
||
using @ref HAL_CRYP_RegisterCallback() before calling @ref HAL_CRYP_DeInit()
|
||
or @ref HAL_CRYP_Init() function.
|
||
[..]
|
||
When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
|
||
not defined, the callback registration feature is not available and all callbacks
|
||
are set to the corresponding weak functions.
|
||
|
||
@endverbatim
|
||
******************************************************************************
|
||
* @attention
|
||
*
|
||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||
* All rights reserved.</center></h2>
|
||
*
|
||
* This software component is licensed by ST under BSD 3-Clause license,
|
||
* the "License"; You may not use this file except in compliance with the
|
||
* License. You may obtain a copy of the License at:
|
||
* opensource.org/licenses/BSD-3-Clause
|
||
*
|
||
******************************************************************************
|
||
*/
|
||
|
||
/* Includes ------------------------------------------------------------------*/
|
||
#include "stm32f2xx_hal.h"
|
||
|
||
#if defined(CRYP)
|
||
#ifdef HAL_CRYP_MODULE_ENABLED
|
||
/** @addtogroup STM32F2xx_HAL_Driver
|
||
* @{
|
||
*/
|
||
|
||
/** @addtogroup CRYP
|
||
* @{
|
||
*/
|
||
|
||
/* Private typedef -----------------------------------------------------------*/
|
||
/* Private define ------------------------------------------------------------*/
|
||
/** @addtogroup CRYP_Private_Defines
|
||
* @{
|
||
*/
|
||
|
||
#define CRYP_TIMEOUT_KEYPREPARATION 82U /*The latency of key preparation operation is 82 clock cycles.*/
|
||
|
||
#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
|
||
#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
|
||
|
||
#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode */
|
||
#define CRYP_OPERATINGMODE_DECRYPT CRYP_CR_ALGODIR /*!< Decryption */
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
|
||
/* Private macro -------------------------------------------------------------*/
|
||
/** @addtogroup CRYP_Private_Macros
|
||
* @{
|
||
*/
|
||
|
||
#define HAL_CRYP_FIFO_FLUSH(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRYP_CR_FFLUSH)
|
||
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/* Private struct -------------------------------------------------------------*/
|
||
/* Private variables ---------------------------------------------------------*/
|
||
/* Private function prototypes -----------------------------------------------*/
|
||
/** @addtogroup CRYP_Private_Functions_prototypes
|
||
* @{
|
||
*/
|
||
|
||
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
|
||
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
|
||
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
|
||
static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
|
||
static void CRYP_SetKey( CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
|
||
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
|
||
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
|
||
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
||
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
||
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
|
||
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
|
||
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
|
||
static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp);
|
||
static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(const CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
||
static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(const CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
||
static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/* Exported functions ---------------------------------------------------------*/
|
||
|
||
/** @defgroup CRYP_Exported_Functions CRYP Exported Functions
|
||
* @{
|
||
*/
|
||
|
||
|
||
/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
|
||
* @brief CRYP Initialization and Configuration functions.
|
||
*
|
||
@verbatim
|
||
========================================================================================
|
||
##### Initialization, de-initialization and Set and Get configuration functions #####
|
||
========================================================================================
|
||
[..] This section provides functions allowing to:
|
||
(+) Initialize the CRYP
|
||
(+) DeInitialize the CRYP
|
||
(+) Initialize the CRYP MSP
|
||
(+) DeInitialize the CRYP MSP
|
||
(+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
|
||
Parameters which are configured in This section are :
|
||
(++) Key size
|
||
(++) Data Type : 32,16, 8 or 1bit
|
||
(++) AlgoMode : for CRYP1 IP
|
||
ECB and CBC in DES/TDES Standard
|
||
ECB,CBC and CTR in AES Standard.
|
||
(+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
|
||
|
||
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
|
||
/**
|
||
* @brief Initializes the CRYP according to the specified
|
||
* parameters in the CRYP_ConfigTypeDef and creates the associated handle.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Check the CRYP handle allocation */
|
||
if(hcryp == NULL)
|
||
{
|
||
return HAL_ERROR;
|
||
}
|
||
|
||
/* Check parameters */
|
||
assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
|
||
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
|
||
assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
|
||
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
if(hcryp->State == HAL_CRYP_STATE_RESET)
|
||
{
|
||
/* Allocate lock resource and initialize it */
|
||
hcryp->Lock = HAL_UNLOCKED;
|
||
|
||
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
||
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
||
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
||
|
||
if(hcryp->MspInitCallback == NULL)
|
||
{
|
||
hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
|
||
}
|
||
|
||
/* Init the low level hardware */
|
||
hcryp->MspInitCallback(hcryp);
|
||
}
|
||
#else
|
||
if(hcryp->State == HAL_CRYP_STATE_RESET)
|
||
{
|
||
/* Allocate lock resource and initialize it */
|
||
hcryp->Lock = HAL_UNLOCKED;
|
||
|
||
/* Init the low level hardware */
|
||
HAL_CRYP_MspInit(hcryp);
|
||
}
|
||
#endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
|
||
|
||
/* Set the key size(This bit field is <20>don<6F>t care<72> in the DES or TDES modes) data type and Algorithm */
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE|CRYP_CR_KEYSIZE|CRYP_CR_ALGOMODE, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
||
|
||
/* Reset Error Code field */
|
||
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Set the default CRYP phase */
|
||
hcryp->Phase = CRYP_PHASE_READY;
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
|
||
/**
|
||
* @brief De-Initializes the CRYP peripheral.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Check the CRYP handle allocation */
|
||
if(hcryp == NULL)
|
||
{
|
||
return HAL_ERROR;
|
||
}
|
||
|
||
/* Set the default CRYP phase */
|
||
hcryp->Phase = CRYP_PHASE_READY;
|
||
|
||
/* Reset CrypInCount and CrypOutCount */
|
||
hcryp->CrypInCount = 0;
|
||
hcryp->CrypOutCount = 0;
|
||
|
||
/* Disable the CRYP peripheral clock */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
if(hcryp->MspDeInitCallback == NULL)
|
||
{
|
||
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
|
||
}
|
||
/* DeInit the low level hardware */
|
||
hcryp->MspDeInitCallback(hcryp);
|
||
|
||
#else
|
||
/* DeInit the low level hardware: CLOCK, NVIC.*/
|
||
HAL_CRYP_MspDeInit(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_RESET;
|
||
|
||
/* Release Lock */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
|
||
/**
|
||
* @brief Configure the CRYP according to the specified
|
||
* parameters in the CRYP_ConfigTypeDef
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
||
* @param pConf: pointer to a CRYP_ConfigTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf )
|
||
{
|
||
/* Check the CRYP handle allocation */
|
||
if((hcryp == NULL)|| (pConf == NULL) )
|
||
{
|
||
return HAL_ERROR;
|
||
}
|
||
|
||
/* Check parameters */
|
||
assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
|
||
assert_param(IS_CRYP_DATATYPE(pConf->DataType));
|
||
assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Set CRYP parameters */
|
||
hcryp->Init.DataType = pConf->DataType;
|
||
hcryp->Init.pKey = pConf->pKey;
|
||
hcryp->Init.Algorithm = pConf->Algorithm;
|
||
hcryp->Init.KeySize = pConf->KeySize;
|
||
hcryp->Init.pInitVect = pConf->pInitVect;
|
||
|
||
/* Set the key size(This bit field is <20>don<6F>t care<72> in the DES or TDES modes) data type, AlgoMode and operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE|CRYP_CR_KEYSIZE|CRYP_CR_ALGOMODE, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
||
|
||
/* Process Unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Reset Error Code field */
|
||
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Set the default CRYP phase */
|
||
hcryp->Phase = CRYP_PHASE_READY;
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
else
|
||
{
|
||
/* Process Unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
return HAL_ERROR;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Get CRYP Configuration parameters in associated handle.
|
||
* @param pConf: pointer to a CRYP_ConfigTypeDef structure
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf )
|
||
{
|
||
/* Check the CRYP handle allocation */
|
||
if((hcryp == NULL)|| (pConf == NULL) )
|
||
{
|
||
return HAL_ERROR;
|
||
}
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Get CRYP parameters */
|
||
pConf->DataType = hcryp->Init.DataType;
|
||
pConf->pKey = hcryp->Init.pKey;
|
||
pConf->Algorithm = hcryp->Init.Algorithm;
|
||
pConf->KeySize = hcryp->Init.KeySize ;
|
||
pConf->pInitVect = hcryp->Init.pInitVect;
|
||
|
||
/* Process Unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
else
|
||
{
|
||
/* Process Unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
return HAL_ERROR;
|
||
}
|
||
}
|
||
/**
|
||
* @brief Initializes the CRYP MSP.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval None
|
||
*/
|
||
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Prevent unused argument(s) compilation warning */
|
||
UNUSED(hcryp);
|
||
|
||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
the HAL_CRYP_MspInit could be implemented in the user file
|
||
*/
|
||
}
|
||
|
||
/**
|
||
* @brief DeInitializes CRYP MSP.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval None
|
||
*/
|
||
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Prevent unused argument(s) compilation warning */
|
||
UNUSED(hcryp);
|
||
|
||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
the HAL_CRYP_MspDeInit could be implemented in the user file
|
||
*/
|
||
}
|
||
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/**
|
||
* @brief Register a User CRYP Callback
|
||
* To be used instead of the weak predefined callback
|
||
* @param hcryp cryp handle
|
||
* @param CallbackID ID of the callback to be registered
|
||
* This parameter can be one of the following values:
|
||
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
||
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
||
* @arg @ref HAL_CRYP_ERROR_CB_ID Rx Half Error callback ID
|
||
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
||
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
||
* @param pCallback pointer to the Callback function
|
||
* @retval status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, pCRYP_CallbackTypeDef pCallback)
|
||
{
|
||
HAL_StatusTypeDef status = HAL_OK;
|
||
|
||
if(pCallback == NULL)
|
||
{
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
|
||
return HAL_ERROR;
|
||
}
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
switch (CallbackID)
|
||
{
|
||
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
||
hcryp->InCpltCallback = pCallback;
|
||
break;
|
||
|
||
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
||
hcryp->OutCpltCallback = pCallback;
|
||
break;
|
||
|
||
case HAL_CRYP_ERROR_CB_ID :
|
||
hcryp->ErrorCallback = pCallback;
|
||
break;
|
||
|
||
case HAL_CRYP_MSPINIT_CB_ID :
|
||
hcryp->MspInitCallback = pCallback;
|
||
break;
|
||
|
||
case HAL_CRYP_MSPDEINIT_CB_ID :
|
||
hcryp->MspDeInitCallback = pCallback;
|
||
break;
|
||
|
||
default :
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
/* Return error status */
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else if(hcryp->State == HAL_CRYP_STATE_RESET)
|
||
{
|
||
switch (CallbackID)
|
||
{
|
||
case HAL_CRYP_MSPINIT_CB_ID :
|
||
hcryp->MspInitCallback = pCallback;
|
||
break;
|
||
|
||
case HAL_CRYP_MSPDEINIT_CB_ID :
|
||
hcryp->MspDeInitCallback = pCallback;
|
||
break;
|
||
|
||
default :
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
/* Return error status */
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
/* Return error status */
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Release Lock */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
return status;
|
||
}
|
||
|
||
/**
|
||
* @brief Unregister an CRYP Callback
|
||
* CRYP callabck is redirected to the weak predefined callback
|
||
* @param hcryp cryp handle
|
||
* @param CallbackID ID of the callback to be unregistered
|
||
* This parameter can be one of the following values:
|
||
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
||
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
||
* @arg @ref HAL_CRYP_ERROR_CB_ID Rx Half Error callback ID
|
||
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
||
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
||
* @retval status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
|
||
{
|
||
HAL_StatusTypeDef status = HAL_OK;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
switch (CallbackID)
|
||
{
|
||
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
||
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
||
break;
|
||
|
||
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
||
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
||
break;
|
||
|
||
case HAL_CRYP_ERROR_CB_ID :
|
||
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
||
break;
|
||
|
||
case HAL_CRYP_MSPINIT_CB_ID :
|
||
hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
||
break;
|
||
|
||
case HAL_CRYP_MSPDEINIT_CB_ID :
|
||
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
||
break;
|
||
|
||
default :
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
/* Return error status */
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else if(hcryp->State == HAL_CRYP_STATE_RESET)
|
||
{
|
||
switch (CallbackID)
|
||
{
|
||
case HAL_CRYP_MSPINIT_CB_ID :
|
||
hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
||
break;
|
||
|
||
case HAL_CRYP_MSPDEINIT_CB_ID :
|
||
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
||
break;
|
||
|
||
default :
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
/* Return error status */
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Update the error code */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
||
/* Return error status */
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Release Lock */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
return status;
|
||
}
|
||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/** @defgroup CRYP_Exported_Functions_Group2 Encrypt Decrypt functions
|
||
* @brief CRYP processing functions.
|
||
*
|
||
@verbatim
|
||
==============================================================================
|
||
##### Encrypt Decrypt functions #####
|
||
==============================================================================
|
||
[..] This section provides API allowing to Encrypt/Decrypt Data following
|
||
Standard DES/TDES or AES, and Algorithm configured by the user:
|
||
(+) Standard DES/TDES only supported by CRYP1 IP, below list of Algorithm supported :
|
||
(++) Electronic Code Book(ECB)
|
||
(++) Cipher Block Chaining (CBC)
|
||
(+) Standard AES supported by CRYP1 IP , list of Algorithm supported:
|
||
(++) Electronic Code Book(ECB)
|
||
(++) Cipher Block Chaining (CBC)
|
||
(++) Counter mode (CTR)
|
||
(++) Cipher Block Chaining (CBC)
|
||
(++) Counter mode (CTR)
|
||
[..] Three processing functions are available:
|
||
(+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
||
(+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
||
(+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
||
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
|
||
/**
|
||
* @brief Encryption mode.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Input: Pointer to the input buffer (plaintext)
|
||
* @param Size: Length of the plaintext buffer in word.
|
||
* @param Output: Pointer to the output buffer(ciphertext)
|
||
* @param Timeout: Specify Timeout value
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
|
||
{
|
||
uint32_t algo;
|
||
HAL_StatusTypeDef status;
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change state Busy */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
||
hcryp->CrypInCount = 0U;
|
||
hcryp->CrypOutCount = 0U;
|
||
hcryp->pCrypInBuffPtr = Input;
|
||
hcryp->pCrypOutBuffPtr = Output;
|
||
|
||
/* Calculate Size parameter in Byte*/
|
||
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
||
{
|
||
hcryp->Size = Size * 4U;
|
||
}
|
||
else
|
||
{
|
||
hcryp->Size = Size;
|
||
}
|
||
|
||
/* Set Encryption operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
||
|
||
/* algo get algorithm selected */
|
||
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
||
|
||
switch(algo)
|
||
{
|
||
case CRYP_DES_ECB:
|
||
case CRYP_DES_CBC:
|
||
case CRYP_TDES_ECB:
|
||
case CRYP_TDES_CBC:
|
||
|
||
/*Set Key */
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
}
|
||
|
||
/*Set Initialization Vector (IV)*/
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
}
|
||
|
||
/* Flush FIFO */
|
||
HAL_CRYP_FIFO_FLUSH(hcryp);
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Statrt DES/TDES encryption process */
|
||
status = CRYP_TDES_Process(hcryp,Timeout);
|
||
break;
|
||
|
||
case CRYP_AES_ECB:
|
||
case CRYP_AES_CBC:
|
||
case CRYP_AES_CTR:
|
||
|
||
/* AES encryption */
|
||
status = CRYP_AES_Encrypt(hcryp, Timeout);
|
||
break;
|
||
|
||
default:
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
|
||
if (status == HAL_OK)
|
||
{
|
||
/* Change the CRYP peripheral state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Return function status */
|
||
return status ;
|
||
}
|
||
|
||
/**
|
||
* @brief Decryption mode.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Input: Pointer to the input buffer (ciphertext )
|
||
* @param Size: Length of the plaintext buffer in word.
|
||
* @param Output: Pointer to the output buffer(plaintext)
|
||
* @param Timeout: Specify Timeout value
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
|
||
{
|
||
HAL_StatusTypeDef status;
|
||
uint32_t algo;
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change state Busy */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
||
hcryp->CrypInCount = 0U;
|
||
hcryp->CrypOutCount = 0U;
|
||
hcryp->pCrypInBuffPtr = Input;
|
||
hcryp->pCrypOutBuffPtr = Output;
|
||
|
||
/* Calculate Size parameter in Byte*/
|
||
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
||
{
|
||
hcryp->Size = Size * 4U;
|
||
}
|
||
else
|
||
{
|
||
hcryp->Size = Size;
|
||
}
|
||
|
||
/* Set Decryption operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
||
|
||
/* algo get algorithm selected */
|
||
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
||
|
||
switch(algo)
|
||
{
|
||
case CRYP_DES_ECB:
|
||
case CRYP_DES_CBC:
|
||
case CRYP_TDES_ECB:
|
||
case CRYP_TDES_CBC:
|
||
|
||
/*Set Key */
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
}
|
||
|
||
/*Set Initialization Vector (IV)*/
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
}
|
||
|
||
/* Flush FIFO */
|
||
HAL_CRYP_FIFO_FLUSH(hcryp);
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Start DES/TDES decryption process */
|
||
status = CRYP_TDES_Process(hcryp, Timeout);
|
||
|
||
break;
|
||
|
||
case CRYP_AES_ECB:
|
||
case CRYP_AES_CBC:
|
||
case CRYP_AES_CTR:
|
||
|
||
/* AES decryption */
|
||
status = CRYP_AES_Decrypt(hcryp, Timeout);
|
||
break;
|
||
|
||
default:
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
|
||
if (status == HAL_OK)
|
||
{
|
||
/* Change the CRYP peripheral state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Return function status */
|
||
return status;
|
||
}
|
||
|
||
/**
|
||
* @brief Encryption in interrupt mode.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Input: Pointer to the input buffer (plaintext)
|
||
* @param Size: Length of the plaintext buffer in word
|
||
* @param Output: Pointer to the output buffer(ciphertext)
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
||
{
|
||
uint32_t algo;
|
||
HAL_StatusTypeDef status;
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change state Busy */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
||
hcryp->CrypInCount = 0U;
|
||
hcryp->CrypOutCount = 0U;
|
||
hcryp->pCrypInBuffPtr = Input;
|
||
hcryp->pCrypOutBuffPtr = Output;
|
||
|
||
/* Calculate Size parameter in Byte*/
|
||
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
||
{
|
||
hcryp->Size = Size * 4U;
|
||
}
|
||
else
|
||
{
|
||
hcryp->Size = Size;
|
||
}
|
||
|
||
/* Set encryption operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
||
|
||
/* algo get algorithm selected */
|
||
algo = (hcryp->Instance->CR & CRYP_CR_ALGOMODE);
|
||
|
||
switch(algo)
|
||
{
|
||
case CRYP_DES_ECB:
|
||
case CRYP_DES_CBC:
|
||
case CRYP_TDES_ECB:
|
||
case CRYP_TDES_CBC:
|
||
|
||
/*Set Key */
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
}
|
||
/* Set the Initialization Vector*/
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
}
|
||
|
||
/* Flush FIFO */
|
||
HAL_CRYP_FIFO_FLUSH(hcryp);
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Enable interrupts */
|
||
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
||
|
||
/* Enable CRYP to start DES/TDES process*/
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
status = HAL_OK;
|
||
break;
|
||
|
||
case CRYP_AES_ECB:
|
||
case CRYP_AES_CBC:
|
||
case CRYP_AES_CTR:
|
||
|
||
status = CRYP_AES_Encrypt_IT(hcryp);
|
||
break;
|
||
|
||
default:
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Return function status */
|
||
return status ;
|
||
}
|
||
|
||
/**
|
||
* @brief Decryption in itnterrupt mode.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Input: Pointer to the input buffer (ciphertext )
|
||
* @param Size: Length of the plaintext buffer in word.
|
||
* @param Output: Pointer to the output buffer(plaintext)
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
||
{
|
||
uint32_t algo;
|
||
HAL_StatusTypeDef status = HAL_OK;
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change state Busy */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
||
hcryp->CrypInCount = 0U;
|
||
hcryp->CrypOutCount = 0U;
|
||
hcryp->pCrypInBuffPtr = Input;
|
||
hcryp->pCrypOutBuffPtr = Output;
|
||
|
||
/* Calculate Size parameter in Byte*/
|
||
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
||
{
|
||
hcryp->Size = Size * 4U;
|
||
}
|
||
else
|
||
{
|
||
hcryp->Size = Size;
|
||
}
|
||
|
||
/* Set decryption operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR,CRYP_OPERATINGMODE_DECRYPT);
|
||
|
||
/* algo get algorithm selected */
|
||
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
||
|
||
switch(algo)
|
||
{
|
||
case CRYP_DES_ECB:
|
||
case CRYP_DES_CBC:
|
||
case CRYP_TDES_ECB:
|
||
case CRYP_TDES_CBC:
|
||
|
||
/*Set Key */
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
}
|
||
|
||
/* Set the Initialization Vector*/
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
}
|
||
/* Flush FIFO */
|
||
HAL_CRYP_FIFO_FLUSH(hcryp);
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Enable interrupts */
|
||
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
||
|
||
/* Enable CRYP and start DES/TDES process*/
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
break;
|
||
|
||
case CRYP_AES_ECB:
|
||
case CRYP_AES_CBC:
|
||
case CRYP_AES_CTR:
|
||
|
||
/* AES decryption */
|
||
status = CRYP_AES_Decrypt_IT(hcryp);
|
||
break;
|
||
|
||
default:
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Return function status */
|
||
return status;
|
||
}
|
||
|
||
/**
|
||
* @brief Encryption in DMA mode.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Input: Pointer to the input buffer (plaintext)
|
||
* @param Size: Length of the plaintext buffer in word.
|
||
* @param Output: Pointer to the output buffer(ciphertext)
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
||
{
|
||
uint32_t algo;
|
||
HAL_StatusTypeDef status = HAL_OK;
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change state Busy */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
||
hcryp->CrypInCount = 0U;
|
||
hcryp->CrypOutCount = 0U;
|
||
hcryp->pCrypInBuffPtr = Input;
|
||
hcryp->pCrypOutBuffPtr = Output;
|
||
|
||
/* Calculate Size parameter in Byte*/
|
||
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
||
{
|
||
hcryp->Size = Size * 4U;
|
||
}
|
||
else
|
||
{
|
||
hcryp->Size = Size;
|
||
}
|
||
|
||
/* Set encryption operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
||
|
||
/* algo get algorithm selected */
|
||
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
||
|
||
switch(algo)
|
||
{
|
||
case CRYP_DES_ECB:
|
||
case CRYP_DES_CBC:
|
||
case CRYP_TDES_ECB:
|
||
case CRYP_TDES_CBC:
|
||
|
||
/*Set Key */
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
}
|
||
|
||
/* Set the Initialization Vector*/
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
}
|
||
|
||
/* Flush FIFO */
|
||
HAL_CRYP_FIFO_FLUSH(hcryp);
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Start DMA process transfer for DES/TDES */
|
||
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
||
|
||
break;
|
||
|
||
case CRYP_AES_ECB:
|
||
case CRYP_AES_CBC:
|
||
case CRYP_AES_CTR:
|
||
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
|
||
/* Set the Initialization Vector IV */
|
||
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
|
||
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
|
||
}
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Start DMA process transfer for AES */
|
||
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
||
break;
|
||
|
||
default:
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Return function status */
|
||
return status;
|
||
}
|
||
|
||
/**
|
||
* @brief Decryption in DMA mode.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Input: Pointer to the input buffer (ciphertext )
|
||
* @param Size: Length of the plaintext buffer in word
|
||
* @param Output: Pointer to the output buffer(plaintext)
|
||
* @retval HAL status
|
||
*/
|
||
HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
||
{
|
||
uint32_t algo;
|
||
HAL_StatusTypeDef status = HAL_OK;
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_READY)
|
||
{
|
||
/* Change state Busy */
|
||
hcryp->State = HAL_CRYP_STATE_BUSY;
|
||
|
||
/* Process locked */
|
||
__HAL_LOCK(hcryp);
|
||
|
||
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
||
hcryp->CrypInCount = 0U;
|
||
hcryp->CrypOutCount = 0U;
|
||
hcryp->pCrypInBuffPtr = Input;
|
||
hcryp->pCrypOutBuffPtr = Output;
|
||
|
||
/* Calculate Size parameter in Byte*/
|
||
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
||
{
|
||
hcryp->Size = Size * 4U;
|
||
}
|
||
else
|
||
{
|
||
hcryp->Size = Size;
|
||
}
|
||
|
||
/* Set decryption operating mode*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
||
|
||
/* algo get algorithm selected */
|
||
algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
||
|
||
switch(algo)
|
||
{
|
||
case CRYP_DES_ECB:
|
||
case CRYP_DES_CBC:
|
||
case CRYP_TDES_ECB:
|
||
case CRYP_TDES_CBC:
|
||
|
||
/*Set Key */
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
}
|
||
|
||
/* Set the Initialization Vector*/
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
}
|
||
|
||
/* Flush FIFO */
|
||
HAL_CRYP_FIFO_FLUSH(hcryp);
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Start DMA process transfer for DES/TDES */
|
||
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
||
break;
|
||
|
||
case CRYP_AES_ECB:
|
||
case CRYP_AES_CBC:
|
||
case CRYP_AES_CTR:
|
||
|
||
/* AES decryption */
|
||
status = CRYP_AES_Decrypt_DMA(hcryp);
|
||
break;
|
||
|
||
default:
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
||
status = HAL_ERROR;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
status = HAL_ERROR;
|
||
}
|
||
|
||
/* Return function status */
|
||
return status;
|
||
}
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
|
||
* @brief CRYP IRQ handler.
|
||
*
|
||
@verbatim
|
||
==============================================================================
|
||
##### CRYP IRQ handler management #####
|
||
==============================================================================
|
||
[..] This section provides CRYP IRQ handler and callback functions.
|
||
(+) HAL_CRYP_IRQHandler CRYP interrupt request
|
||
(+) HAL_CRYP_InCpltCallback input data transfer complete callback
|
||
(+) HAL_CRYP_OutCpltCallback output data transfer complete callback
|
||
(+) HAL_CRYP_ErrorCallback CRYP error callback
|
||
(+) HAL_CRYP_GetState return the CRYP state
|
||
(+) HAL_CRYP_GetError return the CRYP error code
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
/**
|
||
* @brief This function handles cryptographic interrupt request.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval None
|
||
*/
|
||
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
|
||
if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0U) || (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0U))
|
||
{
|
||
if ((hcryp->Init.Algorithm == CRYP_DES_ECB)|| (hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
||
{
|
||
CRYP_TDES_IT(hcryp); /* DES or TDES*/
|
||
}
|
||
else if((hcryp->Init.Algorithm == CRYP_AES_ECB) || (hcryp->Init.Algorithm == CRYP_AES_CBC) || (hcryp->Init.Algorithm == CRYP_AES_CTR))
|
||
{
|
||
CRYP_AES_IT(hcryp); /*AES*/
|
||
}
|
||
else
|
||
{
|
||
/* Nothing to do */
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Return the CRYP error code.
|
||
* @param hcryp : pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for the CRYP IP
|
||
* @retval CRYP error code
|
||
*/
|
||
uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
return hcryp->ErrorCode;
|
||
}
|
||
|
||
/**
|
||
* @brief Returns the CRYP state.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @retval HAL state
|
||
*/
|
||
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
return hcryp->State;
|
||
}
|
||
|
||
/**
|
||
* @brief Input FIFO transfer completed callback.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @retval None
|
||
*/
|
||
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Prevent unused argument(s) compilation warning */
|
||
UNUSED(hcryp);
|
||
|
||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
the HAL_CRYP_InCpltCallback could be implemented in the user file
|
||
*/
|
||
}
|
||
|
||
/**
|
||
* @brief Output FIFO transfer completed callback.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @retval None
|
||
*/
|
||
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Prevent unused argument(s) compilation warning */
|
||
UNUSED(hcryp);
|
||
|
||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
the HAL_CRYP_OutCpltCallback could be implemented in the user file
|
||
*/
|
||
}
|
||
|
||
/**
|
||
* @brief CRYP error callback.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @retval None
|
||
*/
|
||
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
/* Prevent unused argument(s) compilation warning */
|
||
UNUSED(hcryp);
|
||
|
||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||
the HAL_CRYP_ErrorCallback could be implemented in the user file
|
||
*/
|
||
}
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/* Private functions ---------------------------------------------------------*/
|
||
/** @addtogroup CRYP_Private_Functions
|
||
* @{
|
||
*/
|
||
|
||
/**
|
||
* @brief Encryption in ECB/CBC Algorithm with DES/TDES standard.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Timeout: Timeout value
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
||
{
|
||
|
||
uint32_t temp; /* Temporary CrypOutBuff */
|
||
uint16_t incount; /* Temporary CrypInCount Value */
|
||
uint16_t outcount; /* Temporary CrypOutCount Value */
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
|
||
/*Start processing*/
|
||
while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
|
||
{
|
||
/* Temporary CrypInCount Value */
|
||
incount = hcryp->CrypInCount;
|
||
/* Write plain data and get cipher data */
|
||
if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < (hcryp->Size/4U)))
|
||
{
|
||
/* Write the input block in the IN FIFO */
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
}
|
||
|
||
/* Wait for OFNE flag to be raised */
|
||
if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
||
{
|
||
/* Disable the CRYP peripheral clock */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Change state & errorCode*/
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
|
||
if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < (hcryp->Size/4U)))
|
||
{
|
||
/* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
|
||
hcryp->CrypOutCount++;
|
||
}
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
}
|
||
/* Disable CRYP */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
|
||
/**
|
||
* @brief CRYP block input/output data handling under interruption with DES/TDES standard.
|
||
* @note The function is called under interruption only, once
|
||
* interruptions have been enabled by CRYP_Decrypt_IT() and CRYP_Encrypt_IT().
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @retval HAL status
|
||
*/
|
||
static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
uint32_t temp; /* Temporary CrypOutBuff */
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_BUSY)
|
||
{
|
||
if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U) && (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_INRIS) != 0x0U))
|
||
|
||
{
|
||
/* Write input block in the IN FIFO */
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
|
||
if(hcryp->CrypInCount == (hcryp->Size/4U))
|
||
{
|
||
/* Disable interruption */
|
||
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
||
|
||
/* Call the input data transfer complete callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered Input complete callback*/
|
||
hcryp->InCpltCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak Input complete callback*/
|
||
HAL_CRYP_InCpltCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
}
|
||
if((__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U)&& (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_OUTRIS) != 0x0U))
|
||
{
|
||
/* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
|
||
hcryp->CrypOutCount++;
|
||
if(hcryp->CrypOutCount == (hcryp->Size/4U))
|
||
{
|
||
/* Disable interruption */
|
||
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
||
|
||
/* Disable CRYP */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Call output transfer complete callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered Output complete callback*/
|
||
hcryp->OutCpltCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak Output complete callback*/
|
||
HAL_CRYP_OutCpltCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
||
* @param Timeout: specify Timeout value
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
||
{
|
||
uint16_t outcount; /* Temporary CrypOutCount Value */
|
||
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
|
||
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
||
{
|
||
/* Set the Initialization Vector*/
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
|
||
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
|
||
}
|
||
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
|
||
while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
|
||
{
|
||
/* Write plain Ddta and get cipher data */
|
||
CRYP_AES_ProcessData(hcryp,Timeout);
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
}
|
||
|
||
/* Disable CRYP */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
|
||
/**
|
||
* @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
|
||
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
||
{
|
||
/* Set the Initialization Vector*/
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
|
||
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
|
||
}
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
if(hcryp->Size != 0U)
|
||
{
|
||
/* Enable interrupts */
|
||
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
}
|
||
else
|
||
{
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
}
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
|
||
/**
|
||
* @brief Decryption in ECB/CBC & CTR mode with AES Standard
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
||
* @param Timeout: Specify Timeout value
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout )
|
||
{
|
||
uint16_t outcount; /* Temporary CrypOutCount Value */
|
||
|
||
/* Key preparation for ECB/CBC */
|
||
if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/
|
||
{
|
||
/* change ALGOMODE to key preparation for decryption*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
|
||
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
/* Wait for BUSY flag to be raised */
|
||
if(CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
||
{
|
||
/* Disable the CRYP peripheral clock */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Change state */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
return HAL_ERROR;
|
||
}
|
||
/* Turn back to ALGOMODE of the configuration */
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
|
||
}
|
||
else /*Algorithm CTR */
|
||
{
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
}
|
||
|
||
/* Set IV */
|
||
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
||
{
|
||
/* Set the Initialization Vector*/
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
|
||
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
|
||
}
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
|
||
while((hcryp->CrypInCount < (hcryp->Size/4U)) && (outcount < (hcryp->Size/4U)))
|
||
{
|
||
/* Write plain data and get cipher data */
|
||
CRYP_AES_ProcessData(hcryp,Timeout);
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
}
|
||
|
||
/* Disable CRYP */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
/**
|
||
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
__IO uint32_t count = 0U;
|
||
|
||
/* Key preparation for ECB/CBC */
|
||
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
||
{
|
||
/* change ALGOMODE to key preparation for decryption*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
|
||
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
/* Wait for BUSY flag to be raised */
|
||
count = CRYP_TIMEOUT_KEYPREPARATION;
|
||
do
|
||
{
|
||
count-- ;
|
||
if(count == 0U)
|
||
{
|
||
/* Change state */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
return HAL_ERROR;
|
||
}
|
||
}
|
||
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
||
|
||
/* Turn back to ALGOMODE of the configuration */
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
|
||
}
|
||
else /*Algorithm CTR */
|
||
{
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
}
|
||
|
||
/* Set IV */
|
||
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
||
{
|
||
/* Set the Initialization Vector*/
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
|
||
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
|
||
}
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
if(hcryp->Size != 0U)
|
||
{
|
||
/* Enable interrupts */
|
||
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
}
|
||
else
|
||
{
|
||
/* Process locked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
}
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
/**
|
||
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
__IO uint32_t count = 0U;
|
||
|
||
/* Key preparation for ECB/CBC */
|
||
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
||
{
|
||
/* change ALGOMODE to key preparation for decryption*/
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY );
|
||
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
/* Wait for BUSY flag to be raised */
|
||
count = CRYP_TIMEOUT_KEYPREPARATION;
|
||
do
|
||
{
|
||
count-- ;
|
||
if(count == 0U)
|
||
{
|
||
/* Disable the CRYP peripheral clock */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Change state */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
return HAL_ERROR;
|
||
}
|
||
}
|
||
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
||
|
||
/* Turn back to ALGOMODE of the configuration */
|
||
MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm );
|
||
}
|
||
else /*Algorithm CTR */
|
||
{
|
||
/* Set the Key*/
|
||
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
||
}
|
||
|
||
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
||
{
|
||
/* Set the Initialization Vector*/
|
||
hcryp->Instance->IV0LR = *(uint32_t*)(hcryp->Init.pInitVect);
|
||
hcryp->Instance->IV0RR = *(uint32_t*)(hcryp->Init.pInitVect+1);
|
||
hcryp->Instance->IV1LR = *(uint32_t*)(hcryp->Init.pInitVect+2);
|
||
hcryp->Instance->IV1RR = *(uint32_t*)(hcryp->Init.pInitVect+3);
|
||
}
|
||
/* Set the phase */
|
||
hcryp->Phase = CRYP_PHASE_PROCESS;
|
||
|
||
if(hcryp->Size != 0U)
|
||
{
|
||
/* Set the input and output addresses and start DMA transfer */
|
||
CRYP_SetDMAConfig(hcryp, (uint32_t)( hcryp->pCrypInBuffPtr), (hcryp->Size/4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
||
}
|
||
else
|
||
{
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
}
|
||
|
||
/* Return function status */
|
||
return HAL_OK;
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief DMA CRYP input data process complete callback.
|
||
* @param hdma: DMA handle
|
||
* @retval None
|
||
*/
|
||
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
|
||
{
|
||
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
||
|
||
/* Disable the DMA transfer for input FIFO request by resetting the DIEN bit
|
||
in the DMACR register */
|
||
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
|
||
|
||
/* Call input data transfer complete callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered Input complete callback*/
|
||
hcryp->InCpltCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak Input complete callback*/
|
||
HAL_CRYP_InCpltCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
|
||
/**
|
||
* @brief DMA CRYP output data process complete callback.
|
||
* @param hdma: DMA handle
|
||
* @retval None
|
||
*/
|
||
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
|
||
{
|
||
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
||
|
||
|
||
/* Disable the DMA transfer for output FIFO */
|
||
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
|
||
|
||
/* Change the CRYP state to ready */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Disable CRYP */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
|
||
/* Call output data transfer complete callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered Output complete callback*/
|
||
hcryp->OutCpltCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak Output complete callback*/
|
||
HAL_CRYP_OutCpltCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
|
||
/**
|
||
* @brief DMA CRYP communication error callback.
|
||
* @param hdma: DMA handle
|
||
* @retval None
|
||
*/
|
||
static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
|
||
{
|
||
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
||
|
||
/* Change the CRYP peripheral state */
|
||
hcryp->State= HAL_CRYP_STATE_READY;
|
||
|
||
/* DMA error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
||
|
||
/* Call error callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
|
||
/**
|
||
* @brief Set the DMA configuration and start the DMA transfer
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param inputaddr: address of the input buffer
|
||
* @param Size: size of the input buffer, must be a multiple of 16.
|
||
* @param outputaddr: address of the output buffer
|
||
* @retval None
|
||
*/
|
||
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
|
||
{
|
||
/* Set the CRYP DMA transfer complete callback */
|
||
hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
|
||
|
||
/* Set the DMA input error callback */
|
||
hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
|
||
|
||
/* Set the CRYP DMA transfer complete callback */
|
||
hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
|
||
|
||
/* Set the DMA output error callback */
|
||
hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
|
||
|
||
/* Enable CRYP */
|
||
__HAL_CRYP_ENABLE(hcryp);
|
||
|
||
/* Enable the input DMA Stream */
|
||
if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DIN, Size)!=HAL_OK)
|
||
{
|
||
/* DMA error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
||
|
||
/* Call error callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
|
||
/* Enable the output DMA Stream */
|
||
if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size)!=HAL_OK)
|
||
{
|
||
/* DMA error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
||
|
||
/* Call error callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
/* Enable In/Out DMA request */
|
||
hcryp->Instance->DMACR = CRYP_DMACR_DOEN | CRYP_DMACR_DIEN;
|
||
}
|
||
|
||
/**
|
||
* @brief Process Data: Write Input data in polling mode and used in AES functions.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param Timeout: Specify Timeout value
|
||
* @retval None
|
||
*/
|
||
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
||
{
|
||
|
||
uint32_t temp; /* Temporary CrypOutBuff */
|
||
uint16_t incount; /* Temporary CrypInCount Value */
|
||
uint16_t outcount; /* Temporary CrypOutCount Value */
|
||
|
||
/*Temporary CrypOutCount Value*/
|
||
incount = hcryp->CrypInCount;
|
||
|
||
if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < ((hcryp->Size)/4U)))
|
||
{
|
||
/* Write the input block in the IN FIFO */
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
}
|
||
|
||
/* Wait for OFNE flag to be raised */
|
||
if(CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
||
{
|
||
/* Disable the CRYP peripheral clock */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Change state & error code*/
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
|
||
if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < ((hcryp->Size)/4U)))
|
||
{
|
||
/* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Handle CRYP block input/output data handling under interruption.
|
||
* @note The function is called under interruption only, once
|
||
* interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @retval HAL status
|
||
*/
|
||
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
|
||
{
|
||
uint32_t temp; /* Temporary CrypOutBuff */
|
||
uint16_t incount; /* Temporary CrypInCount Value */
|
||
uint16_t outcount; /* Temporary CrypOutCount Value */
|
||
|
||
if(hcryp->State == HAL_CRYP_STATE_BUSY)
|
||
{
|
||
/*Temporary CrypOutCount Value*/
|
||
incount = hcryp->CrypInCount;
|
||
|
||
if(((hcryp->Instance->SR & CRYP_FLAG_IFNF ) != 0x0U) && (incount < (hcryp->Size/4U)))
|
||
{
|
||
/* Write the input block in the IN FIFO */
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
|
||
hcryp->CrypInCount++;
|
||
if(hcryp->CrypInCount == (hcryp->Size/4U))
|
||
{
|
||
/* Disable interrupts */
|
||
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
||
|
||
/* Call the input data transfer complete callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered Input complete callback*/
|
||
hcryp->InCpltCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak Input complete callback*/
|
||
HAL_CRYP_InCpltCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
}
|
||
|
||
/*Temporary CrypOutCount Value*/
|
||
outcount = hcryp->CrypOutCount;
|
||
|
||
if(((hcryp->Instance->SR & CRYP_FLAG_OFNE ) != 0x0U) && (outcount < (hcryp->Size/4U)))
|
||
{
|
||
/* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
temp = hcryp->Instance->DOUT;
|
||
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
|
||
hcryp->CrypOutCount++;
|
||
if(hcryp->CrypOutCount == (hcryp->Size/4U))
|
||
{
|
||
/* Disable interrupts */
|
||
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
||
|
||
/* Change the CRYP state */
|
||
hcryp->State = HAL_CRYP_STATE_READY;
|
||
|
||
/* Disable CRYP */
|
||
__HAL_CRYP_DISABLE(hcryp);
|
||
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
|
||
/* Call output transfer complete callback */
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered Output complete callback*/
|
||
hcryp->OutCpltCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak Output complete callback*/
|
||
HAL_CRYP_OutCpltCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Process unlocked */
|
||
__HAL_UNLOCK(hcryp);
|
||
/* Busy error code field */
|
||
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
||
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
||
/*Call registered error callback*/
|
||
hcryp->ErrorCallback(hcryp);
|
||
#else
|
||
/*Call legacy weak error callback*/
|
||
HAL_CRYP_ErrorCallback(hcryp);
|
||
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Writes Key in Key registers.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module
|
||
* @param KeySize: Size of Key
|
||
* @retval None
|
||
*/
|
||
static void CRYP_SetKey( CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
|
||
{
|
||
switch(KeySize)
|
||
{
|
||
case CRYP_KEYSIZE_256B:
|
||
hcryp->Instance->K0LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K0RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+6);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+7);
|
||
break;
|
||
case CRYP_KEYSIZE_192B:
|
||
hcryp->Instance->K1LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K1RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+4);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+5);
|
||
break;
|
||
case CRYP_KEYSIZE_128B:
|
||
hcryp->Instance->K2LR = *(uint32_t*)(hcryp->Init.pKey);
|
||
hcryp->Instance->K2RR = *(uint32_t*)(hcryp->Init.pKey+1);
|
||
hcryp->Instance->K3LR = *(uint32_t*)(hcryp->Init.pKey+2);
|
||
hcryp->Instance->K3RR = *(uint32_t*)(hcryp->Init.pKey+3);
|
||
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Handle CRYP hardware block Timeout when waiting for BUSY flag to be raised.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @param Timeout: Timeout duration.
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(const CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
||
{
|
||
uint32_t tickstart;
|
||
|
||
/* Get timeout */
|
||
tickstart = HAL_GetTick();
|
||
|
||
while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
|
||
{
|
||
/* Check for the Timeout */
|
||
if(Timeout != HAL_MAX_DELAY)
|
||
{
|
||
if(((HAL_GetTick() - tickstart ) > Timeout) || (Timeout == 0U))
|
||
{
|
||
return HAL_ERROR;
|
||
}
|
||
}
|
||
}
|
||
return HAL_OK;
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief Handle CRYP hardware block Timeout when waiting for OFNE flag to be raised.
|
||
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
||
* the configuration information for CRYP module.
|
||
* @param Timeout: Timeout duration.
|
||
* @retval HAL status
|
||
*/
|
||
static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(const CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
||
{
|
||
uint32_t tickstart;
|
||
|
||
/* Get timeout */
|
||
tickstart = HAL_GetTick();
|
||
|
||
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
|
||
{
|
||
/* Check for the Timeout */
|
||
if(Timeout != HAL_MAX_DELAY)
|
||
{
|
||
if(((HAL_GetTick() - tickstart ) > Timeout) || (Timeout == 0U))
|
||
{
|
||
return HAL_ERROR;
|
||
}
|
||
}
|
||
}
|
||
return HAL_OK;
|
||
}
|
||
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
#endif /* HAL_CRYP_MODULE_ENABLED */
|
||
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
#endif /* CRYP*/
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|