2023-04-28 10:02:38 +01:00

639 lines
18 KiB
C

/**
******************************************************************************
* @file Examples_LL/RTC/RTC_Calendar/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F1xx RTC LL API to configure
* Time and Date.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F1xx_LL_Examples
* @{
*/
/** @addtogroup RTC_Calendar
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Oscillator time-out values */
#define LSI_TIMEOUT_VALUE ((uint32_t)2) /* 2 ms */
#define LSE_TIMEOUT_VALUE ((uint32_t)5000) /* 5 s */
#define HSE_TIMEOUT_VALUE ((uint32_t)4) /* 4 ms */
#define RTC_TIMEOUT_VALUE ((uint32_t)1000) /* 1 s */
/* Defines related to Clock configuration */
/* Uncomment to enable the adequate Clock Source */
/* #define RTC_CLOCK_SOURCE_LSI */
#define RTC_CLOCK_SOURCE_LSE
/* #define RTC_CLOCK_SOURCE_HSE_DIV128 */
#ifdef RTC_CLOCK_SOURCE_LSI
/* ck_apre=LSIFreq/(ASYNC prediv + 1) with LSIFreq=40kHz RC */
#define RTC_ASYNCH_PREDIV ((uint32_t)0x9C3F)
#endif
#ifdef RTC_CLOCK_SOURCE_LSE
/* ck_apre=LSEFreq/(ASYNC prediv + 1) = 1Hz with LSEFreq=32768Hz */
#define RTC_ASYNCH_PREDIV ((uint32_t)0x7FFF)
#endif
#ifdef RTC_CLOCK_SOURCE_HSE_DIV128
/* ck_apre=(HSEFreq/128)/(ASYNC prediv + 1) = 1Hz with HSEFreq=8MHz */
#define RTC_ASYNCH_PREDIV ((uint32_t)0xF423)
#endif
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Time Structure definition */
struct time_t
{
uint8_t sec;
uint8_t min;
uint8_t hour;
};
struct time_t RTC_TimeStruct;
struct date_t
{
uint8_t month;
uint8_t day;
uint8_t year;
};
struct date_t RTC_DateStruct;
uint8_t EndOfMonth[12]= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/* Buffers used for displaying Time and Date */
uint32_t timeCounter = 0;
uint8_t dateUpdate = 0;
uint8_t timeUpdate = 0;
uint8_t aShowTime[13] = {0};
uint8_t aShowDate[13] = {0};
#if (USE_TIMEOUT == 1)
uint32_t Timeout = 0; /* Variable used for Timeout management */
#endif /* USE_TIMEOUT */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Configure_RTC_Clock(void);
void Configure_RTC(void);
void Configure_RTC_Calendar(void);
void RTC_DATE_structUpdate(void);
void RTC_TIME_structUpadate(void);
void RTC_DATE_Config(uint8_t ,uint8_t , uint8_t);
void RTC_TIME_Config(uint8_t ,uint8_t , uint8_t);
uint32_t WaitForSynchro_RTC(void);
void Show_RTC_Calendar(void);
void LED_Init(void);
void LED_On(void);
void LED_Blinking(uint32_t Period);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the system clock to 72 MHz */
SystemClock_Config();
/* Initialize LED1 */
LED_Init();
/*##-1-Configure the RTC peripheral #######################################*/
Configure_RTC_Clock();
/*##-2-Configure the RTC peripheral #######################################*/
Configure_RTC();
/* Configure RTC Calendar */
Configure_RTC_Calendar();
/* Turn-on LED1 to indicate that calendar has been well configured */
LED_On();
/* Infinite loop */
while (1)
{
/*##-3- Display the updated Time and Date ################################*/
Show_RTC_Calendar();
}
}
/**
* @brief Configure RTC clock.
* @param None
* @retval None
*/
void Configure_RTC_Clock(void)
{
/*##-1- Enables the PWR Clock and Enables access to the backup domain #######*/
/* To change the source clock of the RTC feature (LSE, LSI,HSE_DIV128), you have to:
- Enable the power clock
- Enable write access to configure the RTC clock source (to be done once after reset).
- Reset the Back up Domain
- Configure the needed RTC clock source */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR);
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_BKP);
LL_PWR_EnableBkUpAccess();
/*##-2- Configure LSE/LSI as RTC clock source ###############################*/
#ifdef RTC_CLOCK_SOURCE_LSE
/* Enable LSE only if disabled.*/
if (LL_RCC_LSE_IsReady() != 1)
{
LL_RCC_ForceBackupDomainReset();
LL_RCC_ReleaseBackupDomainReset();
LL_RCC_LSE_Enable();
#if (USE_TIMEOUT == 1)
Timeout = LSE_TIMEOUT_VALUE;
#endif /* USE_TIMEOUT */
while (LL_RCC_LSE_IsReady() != 1)
{
#if (USE_TIMEOUT == 1)
if (LL_SYSTICK_IsActiveCounterFlag())
{
Timeout --;
}
if (Timeout == 0)
{
/* LSE activation error */
LED_Blinking(LED_BLINK_ERROR);
}
#endif /* USE_TIMEOUT */
}
}
if (LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_LSE)
{
LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSE);
}
#elif defined(RTC_CLOCK_SOURCE_LSI)
/* Enable LSI */
LL_RCC_LSI_Enable();
#if (USE_TIMEOUT == 1)
Timeout = LSI_TIMEOUT_VALUE;
#endif /* USE_TIMEOUT */
while (LL_RCC_LSI_IsReady() != 1)
{
#if (USE_TIMEOUT == 1)
if (LL_SYSTICK_IsActiveCounterFlag())
{
Timeout --;
}
if (Timeout == 0)
{
/* LSI activation error */
LED_Blinking(LED_BLINK_ERROR);
}
#endif /* USE_TIMEOUT */
}
/* Reset backup domain only if LSI is not yet selected as RTC clock source */
if (LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_LSI)
{
LL_RCC_ForceBackupDomainReset();
LL_RCC_ReleaseBackupDomainReset();
LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSI);
}
#elif defined(RTC_CLOCK_SOURCE_HSE_DIV128)
/* Enable HSE only if disabled.*/
if (LL_RCC_HSE_IsReady() == 0)
{
LL_RCC_HSE_Enable();
#if (USE_TIMEOUT == 1)
Timeout = HSE_TIMEOUT_VALUE;
#endif /* USE_TIMEOUT */
while (LL_RCC_HSE_IsReady() != 1)
{
#if (USE_TIMEOUT == 1)
if (LL_SYSTICK_IsActiveCounterFlag())
{
Timeout --;
}
if (Timeout == 0)
{
/* HSE activation error */
LED_Blinking(LED_BLINK_ERROR);
}
#endif /* USE_TIMEOUT */
}
}
/* Reset backup domain only if LSI is not yet selected as RTC clock source */
if (LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_HSE_DIV128)
{
LL_RCC_ForceBackupDomainReset();
LL_RCC_ReleaseBackupDomainReset();
LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_HSE_DIV128);
}
#else
#error "configure clock for RTC"
#endif
}
/**
* @brief Configure RTC.
* @note Peripheral configuration is minimal configuration from reset values.
* Thus, some useless LL unitary functions calls below are provided as
* commented examples - setting is default configuration from reset.
* @param None
* @retval None
*/
void Configure_RTC(void)
{
/*##-1- Enable RTC peripheral Clocks #######################################*/
/* Enable RTC Clock */
LL_RCC_EnableRTC();
/*##-2- Disable RTC registers write protection ##############################*/
LL_RTC_DisableWriteProtection(RTC);
/*##-3- Enter in initialization mode #######################################*/
if (LL_RTC_EnterInitMode(RTC) != RTC_ERROR_NONE)
{
/* Initialization Error */
LED_Blinking(LED_BLINK_ERROR);
}
/*##-4- Configure RTC ######################################################*/
/* Configure RTC prescaler */
/* Set Asynch Prediv (value according to source clock) */
LL_RTC_SetAsynchPrescaler(RTC, RTC_ASYNCH_PREDIV);
/* RTC_Alarm Interrupt Configuration: EXTI configuration */
LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_17);
LL_EXTI_EnableRisingTrig_0_31(LL_EXTI_LINE_17);
/*##-5- Configure the NVIC for RTC Alarm ###############################*/
NVIC_SetPriority(RTC_IRQn, 0);
NVIC_EnableIRQ(RTC_IRQn);
/*##-6- Exit of initialization mode #######################################*/
LL_RTC_ExitInitMode(RTC);
/*##-7- Enable RTC registers write protection #############################*/
LL_RTC_EnableWriteProtection(RTC);
}
/**
* @brief Configure the current time and date.
* @param None
* @retval None
*/
void Configure_RTC_Calendar(void)
{
/*##-1- Disable RTC registers write protection ############################*/
LL_RTC_DisableWriteProtection(RTC);
/*##-2- Enter in initialization mode ######################################*/
if (LL_RTC_EnterInitMode(RTC) != RTC_ERROR_NONE)
{
/* Initialization Error */
LED_Blinking(LED_BLINK_ERROR);
}
/*##-3- Configure the Date ################################################*/
/* Note: __LL_RTC_CONVERT_BIN2BCD helper macro can be used if user wants to*/
/* provide directly the decimal value: */
/* LL_RTC_DATE_Config(RTC, , */
/* __LL_RTC_CONVERT_BIN2BCD(31), (...)) */
/* Set Date: 31 December 2017 */
RTC_DATE_Config(31, 12, 17);
/*##-4- Configure the Time ################################################*/
/* Set Time: 29:59:55 */
RTC_TIME_Config(23, 59, 55);
/* Enable Second Interrupt */
LL_RTC_EnableIT_SEC(RTC);
/*##-5- Exit of initialization mode #######################################*/
if (LL_RTC_ExitInitMode(RTC) != RTC_ERROR_NONE)
{
/* Initialization Error */
LED_Blinking(LED_BLINK_ERROR);
}
/*##-6- Enable RTC registers write protection #############################*/
LL_RTC_EnableWriteProtection(RTC);
}
/**
* @brief Configure RTC_DATE Structure
* @param fDate: Date
* fMonth: Month
* fYear: Year
* @retval None
*/
void RTC_DATE_Config(uint8_t fDate , uint8_t fMonth , uint8_t fYear)
{
RTC_DateStruct.day = fDate;
RTC_DateStruct.month = fMonth;
RTC_DateStruct.year = fYear;
}
/**
* @brief Configure RTC_TIME Structure
* @param fHour: Hour
* fMin: Minut
* fSec: seconds
* @retval None
*/
void RTC_TIME_Config(uint8_t fHour, uint8_t fMin, uint8_t fSec)
{
RTC_TimeStruct.hour = fHour;
RTC_TimeStruct.min = fMin;
RTC_TimeStruct.sec = fSec;
LL_RTC_TIME_Set(RTC,((RTC_TimeStruct.hour * 3600) +
(RTC_TimeStruct.min * 60) +
RTC_TimeStruct.sec));
}
/**
* @brief Update RTC_Date Structure
* @param None
* @retval None
*/
void RTC_DATE_structUpdate(void)
{
/* Update DATE when Time is 23:59:59 */
if ((timeCounter == 0x0001517FU) & (dateUpdate != 0U))
{
dateUpdate = 0;
if(RTC_DateStruct.day == EndOfMonth[RTC_DateStruct.month - 1U])
{
RTC_DateStruct.day = 1U;
if(RTC_DateStruct.month == 12U)
{
RTC_DateStruct.month = 1U;
RTC_DateStruct.year += 1U;
}
else
{
RTC_DateStruct.month += 1U;
}
}
else
{
RTC_DateStruct.day = RTC_DateStruct.day + 1U;
}
}
}
/**
* @brief Configure RTC_TIME Structure
* @param None
* @retval None
*/
void RTC_TIME_structUpadate(void)
{
if(timeUpdate != 0)
{
timeUpdate = 0;
RTC_TimeStruct.hour = (timeCounter/3600);
RTC_TimeStruct.min = (timeCounter % 3600) / 60;
RTC_TimeStruct.sec = (timeCounter % 3600) % 60;
}
}
/**
* @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
* synchronized with RTC APB clock.
* @param None
* @retval RTC_ERROR_NONE if no error (RTC_ERROR_TIMEOUT will occur if RTC is
* not synchronized)
*/
uint32_t WaitForSynchro_RTC(void)
{
/* Clear RSF flag */
LL_RTC_ClearFlag_RS(RTC);
#if (USE_TIMEOUT == 1)
Timeout = RTC_TIMEOUT_VALUE;
#endif /* USE_TIMEOUT */
/* Wait the registers to be synchronised */
while(LL_RTC_IsActiveFlag_RS(RTC) != 1)
{
#if (USE_TIMEOUT == 1)
if (LL_SYSTICK_IsActiveCounterFlag())
{
Timeout --;
}
if (Timeout == 0)
{
return RTC_ERROR_TIMEOUT;
}
#endif /* USE_TIMEOUT */
}
return RTC_ERROR_NONE;
}
/**
* @brief Display the current time and date.
* @param None
* @retval None
*/
void Show_RTC_Calendar(void)
{
RTC_TIME_structUpadate();
RTC_DATE_structUpdate();
/* Note: need to convert in decimal value in using __LL_RTC_CONVERT_BCD2BIN helper macro */
/* Display time Format : hh:mm:ss */
sprintf((char*)aShowTime,"%.2d:%.2d:%.2d", RTC_TimeStruct.hour,
RTC_TimeStruct.min,
RTC_TimeStruct.sec);
/* Display date Format : mm-dd-yy */
sprintf((char*)aShowDate,"%.2d-%.2d-%.2d", RTC_DateStruct.day,
RTC_DateStruct.month,
(2000 + RTC_DateStruct.year));
}
/**
* @brief Initialize LED1.
* @param None
* @retval None
*/
void LED_Init(void)
{
/* Enable the LED1 Clock */
LED1_GPIO_CLK_ENABLE();
/* Configure IO in output push-pull mode to drive external LED1 */
LL_GPIO_SetPinMode(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_MODE_OUTPUT);
/* Reset value is LL_GPIO_OUTPUT_PUSHPULL */
//LL_GPIO_SetPinOutputType(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_OUTPUT_PUSHPULL);
/* Reset value is LL_GPIO_SPEED_FREQ_LOW */
//LL_GPIO_SetPinSpeed(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_SPEED_FREQ_LOW);
/* Reset value is LL_GPIO_PULL_NO */
//LL_GPIO_SetPinPull(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_PULL_NO);
}
/**
* @brief Turn-on LED1.
* @param None
* @retval None
*/
void LED_On(void)
{
/* Turn LED1 on */
LL_GPIO_SetOutputPin(LED1_GPIO_PORT, LED1_PIN);
}
/**
* @brief Set LED1 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
void LED_Blinking(uint32_t Period)
{
/* Toggle IO in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN);
LL_mDelay(Period);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 72000000
* HCLK(Hz) = 72000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLLMUL = 9
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
/* Set FLASH latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_2);
/* Enable HSE oscillator */
LL_RCC_HSE_EnableBypass();
LL_RCC_HSE_Enable();
while(LL_RCC_HSE_IsReady() != 1)
{
};
/* Main PLL configuration and activation */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9);
LL_RCC_PLL_Enable();
while(LL_RCC_PLL_IsReady() != 1)
{
};
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
};
/* Set APB1 & APB2 prescaler*/
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
/* Set systick to 1ms in using frequency set to 72MHz */
LL_Init1msTick(72000000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
LL_SetSystemCoreClock(72000000);
}
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief Calendar callback
* @param None
* @retval None
*/
void Calendar_Callback(void)
{
timeCounter = LL_RTC_TIME_Get(RTC);
timeUpdate = 1;
/* Reset RTC Counter when Time is 23:59:59 */
if (timeCounter == 0x0001517FU)
{
dateUpdate = 1;
LL_RTC_DisableWriteProtection(RTC);
if (LL_RTC_EnterInitMode(RTC) != RTC_ERROR_NONE)
{
/* Initialization Error */
LED_Blinking(LED_BLINK_ERROR);
}
LL_RTC_TIME_Set(RTC,0x0U);
/* Wait until last write operation on RTC registers has finished */
WaitForSynchro_RTC();
if (LL_RTC_ExitInitMode(RTC) != RTC_ERROR_NONE)
{
/* Initialization Error */
LED_Blinking(LED_BLINK_ERROR);
}
LL_RTC_EnableWriteProtection(RTC);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/