/** ****************************************************************************** * @file Examples_LL/RTC/RTC_Calendar/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F1xx RTC LL API to configure * Time and Date. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * *

© Copyright (c) 2017 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup RTC_Calendar * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Oscillator time-out values */ #define LSI_TIMEOUT_VALUE ((uint32_t)2) /* 2 ms */ #define LSE_TIMEOUT_VALUE ((uint32_t)5000) /* 5 s */ #define HSE_TIMEOUT_VALUE ((uint32_t)4) /* 4 ms */ #define RTC_TIMEOUT_VALUE ((uint32_t)1000) /* 1 s */ /* Defines related to Clock configuration */ /* Uncomment to enable the adequate Clock Source */ /* #define RTC_CLOCK_SOURCE_LSI */ #define RTC_CLOCK_SOURCE_LSE /* #define RTC_CLOCK_SOURCE_HSE_DIV128 */ #ifdef RTC_CLOCK_SOURCE_LSI /* ck_apre=LSIFreq/(ASYNC prediv + 1) with LSIFreq=40kHz RC */ #define RTC_ASYNCH_PREDIV ((uint32_t)0x9C3F) #endif #ifdef RTC_CLOCK_SOURCE_LSE /* ck_apre=LSEFreq/(ASYNC prediv + 1) = 1Hz with LSEFreq=32768Hz */ #define RTC_ASYNCH_PREDIV ((uint32_t)0x7FFF) #endif #ifdef RTC_CLOCK_SOURCE_HSE_DIV128 /* ck_apre=(HSEFreq/128)/(ASYNC prediv + 1) = 1Hz with HSEFreq=8MHz */ #define RTC_ASYNCH_PREDIV ((uint32_t)0xF423) #endif /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Time Structure definition */ struct time_t { uint8_t sec; uint8_t min; uint8_t hour; }; struct time_t RTC_TimeStruct; struct date_t { uint8_t month; uint8_t day; uint8_t year; }; struct date_t RTC_DateStruct; uint8_t EndOfMonth[12]= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; /* Buffers used for displaying Time and Date */ uint32_t timeCounter = 0; uint8_t dateUpdate = 0; uint8_t timeUpdate = 0; uint8_t aShowTime[13] = {0}; uint8_t aShowDate[13] = {0}; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for Timeout management */ #endif /* USE_TIMEOUT */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_RTC_Clock(void); void Configure_RTC(void); void Configure_RTC_Calendar(void); void RTC_DATE_structUpdate(void); void RTC_TIME_structUpadate(void); void RTC_DATE_Config(uint8_t ,uint8_t , uint8_t); void RTC_TIME_Config(uint8_t ,uint8_t , uint8_t); uint32_t WaitForSynchro_RTC(void); void Show_RTC_Calendar(void); void LED_Init(void); void LED_On(void); void LED_Blinking(uint32_t Period); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED1 */ LED_Init(); /*##-1-Configure the RTC peripheral #######################################*/ Configure_RTC_Clock(); /*##-2-Configure the RTC peripheral #######################################*/ Configure_RTC(); /* Configure RTC Calendar */ Configure_RTC_Calendar(); /* Turn-on LED1 to indicate that calendar has been well configured */ LED_On(); /* Infinite loop */ while (1) { /*##-3- Display the updated Time and Date ################################*/ Show_RTC_Calendar(); } } /** * @brief Configure RTC clock. * @param None * @retval None */ void Configure_RTC_Clock(void) { /*##-1- Enables the PWR Clock and Enables access to the backup domain #######*/ /* To change the source clock of the RTC feature (LSE, LSI,HSE_DIV128), you have to: - Enable the power clock - Enable write access to configure the RTC clock source (to be done once after reset). - Reset the Back up Domain - Configure the needed RTC clock source */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR); LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_BKP); LL_PWR_EnableBkUpAccess(); /*##-2- Configure LSE/LSI as RTC clock source ###############################*/ #ifdef RTC_CLOCK_SOURCE_LSE /* Enable LSE only if disabled.*/ if (LL_RCC_LSE_IsReady() != 1) { LL_RCC_ForceBackupDomainReset(); LL_RCC_ReleaseBackupDomainReset(); LL_RCC_LSE_Enable(); #if (USE_TIMEOUT == 1) Timeout = LSE_TIMEOUT_VALUE; #endif /* USE_TIMEOUT */ while (LL_RCC_LSE_IsReady() != 1) { #if (USE_TIMEOUT == 1) if (LL_SYSTICK_IsActiveCounterFlag()) { Timeout --; } if (Timeout == 0) { /* LSE activation error */ LED_Blinking(LED_BLINK_ERROR); } #endif /* USE_TIMEOUT */ } } if (LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_LSE) { LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSE); } #elif defined(RTC_CLOCK_SOURCE_LSI) /* Enable LSI */ LL_RCC_LSI_Enable(); #if (USE_TIMEOUT == 1) Timeout = LSI_TIMEOUT_VALUE; #endif /* USE_TIMEOUT */ while (LL_RCC_LSI_IsReady() != 1) { #if (USE_TIMEOUT == 1) if (LL_SYSTICK_IsActiveCounterFlag()) { Timeout --; } if (Timeout == 0) { /* LSI activation error */ LED_Blinking(LED_BLINK_ERROR); } #endif /* USE_TIMEOUT */ } /* Reset backup domain only if LSI is not yet selected as RTC clock source */ if (LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_LSI) { LL_RCC_ForceBackupDomainReset(); LL_RCC_ReleaseBackupDomainReset(); LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSI); } #elif defined(RTC_CLOCK_SOURCE_HSE_DIV128) /* Enable HSE only if disabled.*/ if (LL_RCC_HSE_IsReady() == 0) { LL_RCC_HSE_Enable(); #if (USE_TIMEOUT == 1) Timeout = HSE_TIMEOUT_VALUE; #endif /* USE_TIMEOUT */ while (LL_RCC_HSE_IsReady() != 1) { #if (USE_TIMEOUT == 1) if (LL_SYSTICK_IsActiveCounterFlag()) { Timeout --; } if (Timeout == 0) { /* HSE activation error */ LED_Blinking(LED_BLINK_ERROR); } #endif /* USE_TIMEOUT */ } } /* Reset backup domain only if LSI is not yet selected as RTC clock source */ if (LL_RCC_GetRTCClockSource() != LL_RCC_RTC_CLKSOURCE_HSE_DIV128) { LL_RCC_ForceBackupDomainReset(); LL_RCC_ReleaseBackupDomainReset(); LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_HSE_DIV128); } #else #error "configure clock for RTC" #endif } /** * @brief Configure RTC. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_RTC(void) { /*##-1- Enable RTC peripheral Clocks #######################################*/ /* Enable RTC Clock */ LL_RCC_EnableRTC(); /*##-2- Disable RTC registers write protection ##############################*/ LL_RTC_DisableWriteProtection(RTC); /*##-3- Enter in initialization mode #######################################*/ if (LL_RTC_EnterInitMode(RTC) != RTC_ERROR_NONE) { /* Initialization Error */ LED_Blinking(LED_BLINK_ERROR); } /*##-4- Configure RTC ######################################################*/ /* Configure RTC prescaler */ /* Set Asynch Prediv (value according to source clock) */ LL_RTC_SetAsynchPrescaler(RTC, RTC_ASYNCH_PREDIV); /* RTC_Alarm Interrupt Configuration: EXTI configuration */ LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_17); LL_EXTI_EnableRisingTrig_0_31(LL_EXTI_LINE_17); /*##-5- Configure the NVIC for RTC Alarm ###############################*/ NVIC_SetPriority(RTC_IRQn, 0); NVIC_EnableIRQ(RTC_IRQn); /*##-6- Exit of initialization mode #######################################*/ LL_RTC_ExitInitMode(RTC); /*##-7- Enable RTC registers write protection #############################*/ LL_RTC_EnableWriteProtection(RTC); } /** * @brief Configure the current time and date. * @param None * @retval None */ void Configure_RTC_Calendar(void) { /*##-1- Disable RTC registers write protection ############################*/ LL_RTC_DisableWriteProtection(RTC); /*##-2- Enter in initialization mode ######################################*/ if (LL_RTC_EnterInitMode(RTC) != RTC_ERROR_NONE) { /* Initialization Error */ LED_Blinking(LED_BLINK_ERROR); } /*##-3- Configure the Date ################################################*/ /* Note: __LL_RTC_CONVERT_BIN2BCD helper macro can be used if user wants to*/ /* provide directly the decimal value: */ /* LL_RTC_DATE_Config(RTC, , */ /* __LL_RTC_CONVERT_BIN2BCD(31), (...)) */ /* Set Date: 31 December 2017 */ RTC_DATE_Config(31, 12, 17); /*##-4- Configure the Time ################################################*/ /* Set Time: 29:59:55 */ RTC_TIME_Config(23, 59, 55); /* Enable Second Interrupt */ LL_RTC_EnableIT_SEC(RTC); /*##-5- Exit of initialization mode #######################################*/ if (LL_RTC_ExitInitMode(RTC) != RTC_ERROR_NONE) { /* Initialization Error */ LED_Blinking(LED_BLINK_ERROR); } /*##-6- Enable RTC registers write protection #############################*/ LL_RTC_EnableWriteProtection(RTC); } /** * @brief Configure RTC_DATE Structure * @param fDate: Date * fMonth: Month * fYear: Year * @retval None */ void RTC_DATE_Config(uint8_t fDate , uint8_t fMonth , uint8_t fYear) { RTC_DateStruct.day = fDate; RTC_DateStruct.month = fMonth; RTC_DateStruct.year = fYear; } /** * @brief Configure RTC_TIME Structure * @param fHour: Hour * fMin: Minut * fSec: seconds * @retval None */ void RTC_TIME_Config(uint8_t fHour, uint8_t fMin, uint8_t fSec) { RTC_TimeStruct.hour = fHour; RTC_TimeStruct.min = fMin; RTC_TimeStruct.sec = fSec; LL_RTC_TIME_Set(RTC,((RTC_TimeStruct.hour * 3600) + (RTC_TimeStruct.min * 60) + RTC_TimeStruct.sec)); } /** * @brief Update RTC_Date Structure * @param None * @retval None */ void RTC_DATE_structUpdate(void) { /* Update DATE when Time is 23:59:59 */ if ((timeCounter == 0x0001517FU) & (dateUpdate != 0U)) { dateUpdate = 0; if(RTC_DateStruct.day == EndOfMonth[RTC_DateStruct.month - 1U]) { RTC_DateStruct.day = 1U; if(RTC_DateStruct.month == 12U) { RTC_DateStruct.month = 1U; RTC_DateStruct.year += 1U; } else { RTC_DateStruct.month += 1U; } } else { RTC_DateStruct.day = RTC_DateStruct.day + 1U; } } } /** * @brief Configure RTC_TIME Structure * @param None * @retval None */ void RTC_TIME_structUpadate(void) { if(timeUpdate != 0) { timeUpdate = 0; RTC_TimeStruct.hour = (timeCounter/3600); RTC_TimeStruct.min = (timeCounter % 3600) / 60; RTC_TimeStruct.sec = (timeCounter % 3600) % 60; } } /** * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are * synchronized with RTC APB clock. * @param None * @retval RTC_ERROR_NONE if no error (RTC_ERROR_TIMEOUT will occur if RTC is * not synchronized) */ uint32_t WaitForSynchro_RTC(void) { /* Clear RSF flag */ LL_RTC_ClearFlag_RS(RTC); #if (USE_TIMEOUT == 1) Timeout = RTC_TIMEOUT_VALUE; #endif /* USE_TIMEOUT */ /* Wait the registers to be synchronised */ while(LL_RTC_IsActiveFlag_RS(RTC) != 1) { #if (USE_TIMEOUT == 1) if (LL_SYSTICK_IsActiveCounterFlag()) { Timeout --; } if (Timeout == 0) { return RTC_ERROR_TIMEOUT; } #endif /* USE_TIMEOUT */ } return RTC_ERROR_NONE; } /** * @brief Display the current time and date. * @param None * @retval None */ void Show_RTC_Calendar(void) { RTC_TIME_structUpadate(); RTC_DATE_structUpdate(); /* Note: need to convert in decimal value in using __LL_RTC_CONVERT_BCD2BIN helper macro */ /* Display time Format : hh:mm:ss */ sprintf((char*)aShowTime,"%.2d:%.2d:%.2d", RTC_TimeStruct.hour, RTC_TimeStruct.min, RTC_TimeStruct.sec); /* Display date Format : mm-dd-yy */ sprintf((char*)aShowDate,"%.2d-%.2d-%.2d", RTC_DateStruct.day, RTC_DateStruct.month, (2000 + RTC_DateStruct.year)); } /** * @brief Initialize LED1. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED1 Clock */ LED1_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED1 */ LL_GPIO_SetPinMode(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_NO */ //LL_GPIO_SetPinPull(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_PULL_NO); } /** * @brief Turn-on LED1. * @param None * @retval None */ void LED_On(void) { /* Turn LED1 on */ LL_GPIO_SetOutputPin(LED1_GPIO_PORT, LED1_PIN); } /** * @brief Set LED1 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN); LL_mDelay(Period); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Calendar callback * @param None * @retval None */ void Calendar_Callback(void) { timeCounter = LL_RTC_TIME_Get(RTC); timeUpdate = 1; /* Reset RTC Counter when Time is 23:59:59 */ if (timeCounter == 0x0001517FU) { dateUpdate = 1; LL_RTC_DisableWriteProtection(RTC); if (LL_RTC_EnterInitMode(RTC) != RTC_ERROR_NONE) { /* Initialization Error */ LED_Blinking(LED_BLINK_ERROR); } LL_RTC_TIME_Set(RTC,0x0U); /* Wait until last write operation on RTC registers has finished */ WaitForSynchro_RTC(); if (LL_RTC_ExitInitMode(RTC) != RTC_ERROR_NONE) { /* Initialization Error */ LED_Blinking(LED_BLINK_ERROR); } LL_RTC_EnableWriteProtection(RTC); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/