2019-07-15 15:28:06 +01:00

306 lines
9.9 KiB
C

/**
******************************************************************************
* @file TIM/TIM_PWMInput/Src/main.c
* @author MCD Application Team
* @brief This example shows how to use the TIM peripheral to measure the
* frequency and duty cycle of an external signal.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F0xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_PWMInput
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Input Capture Configuration Structure declaration */
TIM_IC_InitTypeDef sConfig;
/* Slave configuration structure */
TIM_SlaveConfigTypeDef sSlaveConfig;
/* Captured Value */
__IO uint32_t uwIC2Value = 0;
/* Duty Cycle Value */
__IO uint32_t uwDutyCycle = 0;
/* Frequency Value */
__IO uint32_t uwFrequency = 0;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F0xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Low Level Initialization
*/
HAL_Init();
/* Configure LED2 */
BSP_LED_Init(LED2);
/* Configure the system clock to 48 MHz */
SystemClock_Config();
/*##-1- Configure the TIM peripheral #######################################*/
/* ---------------------------------------------------------------------------
TIM3 configuration: PWM Input mode
In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1),
since APB1 prescaler is 1.
TIM3CLK = PCLK1
PCLK1 = HCLK
=> TIM3CLK = HCLK = SystemCoreClock
External Signal Frequency = TIM3 counter clock / TIM3_CCR2 in Hz.
External Signal DutyCycle = (TIM3_CCR1*100)/(TIM3_CCR2) in %.
--------------------------------------------------------------------------- */
/* Set TIMx instance */
TimHandle.Instance = TIMx;
/* Initialize TIMx peripheral as follows:
+ Period = 0xFFFF
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Init.Period = 0xFFFF;
TimHandle.Init.Prescaler = 0;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.RepetitionCounter = 0;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_IC_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the Input Capture channels ###############################*/
/* Common configuration */
sConfig.ICPrescaler = TIM_ICPSC_DIV1;
sConfig.ICFilter = 0;
/* Configure the Input Capture of channel 1 */
sConfig.ICPolarity = TIM_ICPOLARITY_FALLING;
sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure the Input Capture of channel 2 */
sConfig.ICPolarity = TIM_ICPOLARITY_RISING;
sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Configure the slave mode ###########################################*/
/* Select the slave Mode: Reset Mode */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
sSlaveConfig.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-4- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*##-5- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief Input Capture callback in non blocking mode
* @param htim : TIM IC handle
* @retval None
*/
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
/* Get the Input Capture value */
uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (uwIC2Value != 0)
{
/* Duty cycle computation */
uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1)) * 100) / uwIC2Value;
/* uwFrequency computation
TIM3 counter clock = (RCC_Clocks.HCLK_Frequency) */
uwFrequency = (HAL_RCC_GetHCLKFreq()) / uwIC2Value;
}
else
{
uwDutyCycle = 0;
uwFrequency = 0;
}
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED2 on */
BSP_LED_On(LED2);
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 48000000
* HCLK(Hz) = 48000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* HSI Frequency(Hz) = 8000000
* PREDIV = 2
* PLLMUL = 12
* Flash Latency(WS) = 1
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* No HSE Oscillator on Nucleo, Activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(char *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/