mirror of
https://github.com/STMicroelectronics/STM32CubeF0.git
synced 2025-05-05 19:29:46 +08:00
632 lines
25 KiB
C
632 lines
25 KiB
C
/**
|
|
******************************************************************************
|
|
* @file ADC/ADC_Sequencer/Src/main.c
|
|
* @author MCD Application Team
|
|
* @brief This example provides a short description of how to use the ADC
|
|
* peripheral with sequencer, to convert several channels.
|
|
* Channels converted are 1 channel on external pin and 2 internal
|
|
* channels (VrefInt and temperature sensor).
|
|
* Moreover, voltage and temperature are then computed.
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2016 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "main.h"
|
|
|
|
/** @addtogroup STM32F0xx_HAL_Examples
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup ADC_Sequencer
|
|
* @{
|
|
*/
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
#define VDDA_APPLI ((uint32_t) 3300) /* Value of analog voltage supply Vdda (unit: mV) */
|
|
#define RANGE_12BITS ((uint32_t) 4095) /* Max digital value with a full range of 12 bits */
|
|
|
|
/* ADC parameters */
|
|
#define ADCCONVERTEDVALUES_BUFFER_SIZE ((uint32_t) 3) /* Size of array containing ADC converted values: set to ADC sequencer number of ranks converted, to have a rank in each address */
|
|
|
|
/* Internal temperature sensor: constants data used for indicative values in */
|
|
/* this example. Refer to device datasheet for min/typ/max values. */
|
|
/* For more accurate values, device should be calibrated on offset and slope */
|
|
/* for application temperature range. */
|
|
#define INTERNAL_TEMPSENSOR_V30 ((int32_t) 1430) /* Internal temperature sensor, parameter V30 (unit: mV). Refer to device datasheet for min/typ/max values. */
|
|
#define INTERNAL_TEMPSENSOR_AVGSLOPE ((int32_t) 4300) /* Internal temperature sensor, parameter Avg_Slope (unit: uV/DegCelsius). Refer to device datasheet for min/typ/max values. */
|
|
#define TEMP30_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FFFF7B8)) /* Internal temperature sensor, parameter TS_CAL1: TS ADC raw data acquired at a temperature of 110 DegC (+-5 DegC), VDDA = 3.3 V (+-10 mV). */
|
|
#define TEMP110_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FFFF7C2)) /* Internal temperature sensor, parameter TS_CAL2: TS ADC raw data acquired at a temperature of 30 DegC (+-5 DegC), VDDA = 3.3 V (+-10 mV). */
|
|
#define VDDA_TEMP_CAL ((uint32_t) 3300) /* Vdda value with which temperature sensor has been calibrated in production (+-10 mV). */
|
|
|
|
/* Internal voltage reference */
|
|
#define VREFINT_CAL ((uint16_t*) ((uint32_t) 0x1FFFF7BA)) /* Internal temperature sensor, parameter VREFINT_CAL: Raw data acquired at a temperature of 30 DegC (+-5 DegC), VDDA = 3.3 V (+-10 mV). */
|
|
/* This calibration parameter is intended to calculate the actual VDDA from Vrefint ADC measurement. */
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/**
|
|
* @brief Computation of temperature (unit: degree Celsius) from the internal
|
|
* temperature sensor measurement by ADC.
|
|
* Computation is using temperature sensor calibration values done
|
|
* in production.
|
|
* Computation formula:
|
|
* Temperature = (TS_ADC_DATA - TS_CAL1) * (110degC - 30degC)
|
|
* / (TS_CAL2 - TS_CAL1) + 30degC
|
|
* with TS_ADC_DATA = temperature sensor raw data measured by ADC
|
|
* Avg_Slope = (TS_CAL2 - TS_CAL1) / (110 - 30)
|
|
* TS_CAL1 = TS_ADC_DATA @30degC (calibrated in factory)
|
|
* TS_CAL2 = TS_ADC_DATA @110degC (calibrated in factory)
|
|
* Calculation validity conditioned to settings:
|
|
* - ADC resolution 12 bits (need to scale conversion value
|
|
* if using a different resolution).
|
|
* - Power supply of analog voltage set to literal VDDA_APPLI
|
|
* (need to scale value if using a different value of analog
|
|
* voltage supply).
|
|
* @param TS_ADC_DATA: Temperature sensor digital value measured by ADC
|
|
* @retval None
|
|
*/
|
|
#define COMPUTATION_TEMPERATURE_TEMP30_TEMP110(TS_ADC_DATA) \
|
|
(((( ((int32_t)((TS_ADC_DATA * VDDA_APPLI) / VDDA_TEMP_CAL) \
|
|
- (int32_t) *TEMP30_CAL_ADDR) \
|
|
) * (int32_t)(110 - 30) \
|
|
) / (int32_t)(*TEMP110_CAL_ADDR - *TEMP30_CAL_ADDR) \
|
|
) + 30 \
|
|
)
|
|
|
|
/**
|
|
* @brief Computation of temperature (unit: degree Celsius) from the internal
|
|
* temperature sensor measurement by ADC.
|
|
* Computation is using temperature sensor standard parameters (refer
|
|
* to device datasheet).
|
|
* Computation formula:
|
|
* Temperature = (VTS - V30)/Avg_Slope + 30
|
|
* with VTS = temperature sensor voltage
|
|
* Avg_Slope = temperature sensor slope (unit: uV/DegCelsius)
|
|
* V30 = temperature sensor @25degC and Vdda defined at VDDA_TEMP_CAL (unit: mV)
|
|
* Calculation validity conditioned to settings:
|
|
* - ADC resolution 12 bits (need to scale value if using a different
|
|
* resolution).
|
|
* - Power supply of analog voltage set to literal VDDA_APPLI
|
|
* (need to scale value if using a different value of analog
|
|
* voltage supply).
|
|
* @param TS_ADC_DATA: Temperature sensor digital value measured by ADC
|
|
* @retval None
|
|
*/
|
|
#define COMPUTATION_TEMPERATURE_STD_PARAMS_AVGSLOPE_V30(TS_ADC_DATA) \
|
|
((( ((int32_t)((INTERNAL_TEMPSENSOR_V30 * VDDA_TEMP_CAL) / VDDA_APPLI) \
|
|
- (int32_t)(((TS_ADC_DATA) * VDDA_APPLI) / RANGE_12BITS) \
|
|
) * 1000 \
|
|
) / INTERNAL_TEMPSENSOR_AVGSLOPE \
|
|
) + 25 \
|
|
)
|
|
|
|
/**
|
|
* @brief Computation of voltage (unit: mV) from ADC measurement digital
|
|
* value on range 12 bits.
|
|
* Calculation validity conditioned to settings:
|
|
* - ADC resolution 12 bits (need to scale value if using a different
|
|
* resolution).
|
|
* - Power supply of analog voltage Vdda 3.3V (need to scale value
|
|
* if using a different analog voltage supply value).
|
|
* @param ADC_DATA: Digital value measured by ADC
|
|
* @retval None
|
|
*/
|
|
#define COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(ADC_DATA) \
|
|
( ((ADC_DATA) * VDDA_APPLI) / RANGE_12BITS)
|
|
|
|
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Peripherals handlers declaration */
|
|
/* ADC handler declaration */
|
|
ADC_HandleTypeDef AdcHandle;
|
|
|
|
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
|
|
/* DAC handler declaration */
|
|
DAC_HandleTypeDef DacHandle; /* DAC used for waveform voltage generation for test */
|
|
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
|
|
|
|
/* Variable containing ADC conversions results */
|
|
__IO uint16_t aADCxConvertedValues[ADCCONVERTEDVALUES_BUFFER_SIZE];
|
|
|
|
/* Variables for ADC conversions results computation to physical values */
|
|
uint16_t uhADCChannelToDAC_mVolt = 0;
|
|
uint16_t uhVrefInt_mVolt = 0;
|
|
int32_t wTemperature_DegreeCelsius = 0;
|
|
|
|
/* Variables to manage push button on board: interface between ExtLine interruption and main program */
|
|
uint8_t ubUserButtonClickCount = 0; /* Count number of clicks: Incremented after User Button interrupt */
|
|
__IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */
|
|
|
|
/* Variable to report ADC sequencer status */
|
|
uint8_t ubSequenceCompleted = RESET; /* Set when all ranks of the sequence have been converted */
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
void SystemClock_Config(void);
|
|
static void Error_Handler(void);
|
|
static void ADC_Config(void);
|
|
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
|
|
static void WaveformVoltageGenerationForTest_Config(void);
|
|
static void WaveformVoltageGenerationForTest_Update(void);
|
|
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Main program.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
int main(void)
|
|
{
|
|
/* STM32F0xx HAL library initialization:
|
|
- Configure the Flash prefetch
|
|
- Systick timer is configured by default as source of time base, but user
|
|
can eventually implement his proper time base source (a general purpose
|
|
timer for example or other time source), keeping in mind that Time base
|
|
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
|
handled in milliseconds basis.
|
|
- Low Level Initialization
|
|
*/
|
|
HAL_Init();
|
|
|
|
/* Configure the system clock to 48 MHz */
|
|
SystemClock_Config();
|
|
|
|
|
|
/*## Configure peripherals #################################################*/
|
|
|
|
/* Initialize LED on board */
|
|
BSP_LED_Init(LED2);
|
|
|
|
/* Configure User push-button in Interrupt mode */
|
|
BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
|
|
|
|
/* Configure the ADCx peripheral */
|
|
ADC_Config();
|
|
|
|
/* Run the ADC calibration */
|
|
if (HAL_ADCEx_Calibration_Start(&AdcHandle) != HAL_OK)
|
|
{
|
|
/* Calibration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
|
|
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
|
|
/* Configure the DAC peripheral and generate a constant voltage of Vdda/2. */
|
|
WaveformVoltageGenerationForTest_Config();
|
|
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
|
|
|
|
|
|
/*## Enable peripherals ####################################################*/
|
|
|
|
/*## Start ADC conversions #################################################*/
|
|
|
|
/* Start ADC conversion on regular group with transfer by DMA */
|
|
if (HAL_ADC_Start_DMA(&AdcHandle,
|
|
(uint32_t *)aADCxConvertedValues,
|
|
ADCCONVERTEDVALUES_BUFFER_SIZE
|
|
) != HAL_OK)
|
|
{
|
|
/* Start Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
|
|
/* Wait for event on push button to perform following actions */
|
|
while ((ubUserButtonClickEvent) == RESET)
|
|
{
|
|
}
|
|
/* Reset variable for next loop iteration */
|
|
ubUserButtonClickEvent = RESET;
|
|
|
|
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
|
|
/* Modifies the voltage level incrementally from 0V to Vdda at each call. */
|
|
/* Circular waveform of ramp: When the maximum level is reaches, */
|
|
/* restart from 0V. */
|
|
WaveformVoltageGenerationForTest_Update();
|
|
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
|
|
|
|
|
|
/* Start ADC conversion */
|
|
/* Since sequencer is enabled in discontinuous mode, this will perform */
|
|
/* the conversion of the next rank in sequencer. */
|
|
/* Note: For this example, conversion is triggered by software start, */
|
|
/* therefore "HAL_ADC_Start()" must be called for each conversion. */
|
|
/* Since DMA transfer has been initiated previously by function */
|
|
/* "HAL_ADC_Start_DMA()", this function will keep DMA transfer */
|
|
/* active. */
|
|
if (HAL_ADC_Start(&AdcHandle) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Wait for conversion completion */
|
|
/* Note: A fixed wait time of 1ms is used for the purpose of this */
|
|
/* example: ADC conversions are decomposed between each rank */
|
|
/* of the ADC sequencer. */
|
|
/* Function "HAL_ADC_PollForConversion(&AdcHandle, 1)" could be */
|
|
/* used, instead of wait time, but with a different configuration */
|
|
/* (this function cannot be used if ADC configured in DMA mode */
|
|
/* and polling for end of each conversion): a possible */
|
|
/* configuration is ADC polling for the entire sequence (ADC init */
|
|
/* parameter "EOCSelection" set to ADC_EOC_SEQ_CONV) (this also */
|
|
/* induces that ADC discontinuous mode must be disabled). */
|
|
HAL_Delay(1);
|
|
|
|
/* Turn-on/off LED2 in function of ADC sequencer status */
|
|
/* - Turn-off if sequencer has not yet converted all ranks */
|
|
/* - Turn-on if sequencer has converted all ranks */
|
|
if (ubSequenceCompleted == RESET)
|
|
{
|
|
BSP_LED_Off(LED2);
|
|
}
|
|
else
|
|
{
|
|
BSP_LED_On(LED2);
|
|
|
|
/* Computation of ADC conversions raw data to physical values */
|
|
/* Note: ADC results are transferred into array "aADCxConvertedValues" */
|
|
/* in the order of their rank in ADC sequencer. */
|
|
uhADCChannelToDAC_mVolt = COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(aADCxConvertedValues[0]);
|
|
uhVrefInt_mVolt = COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(aADCxConvertedValues[2]);
|
|
wTemperature_DegreeCelsius = COMPUTATION_TEMPERATURE_TEMP30_TEMP110(aADCxConvertedValues[1]);
|
|
|
|
/* Reset variable for next loop iteration */
|
|
ubSequenceCompleted = RESET;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief System Clock Configuration
|
|
* The system Clock is configured as follow :
|
|
* System Clock source = PLL (HSI48)
|
|
* SYSCLK(Hz) = 48000000
|
|
* HCLK(Hz) = 48000000
|
|
* AHB Prescaler = 1
|
|
* APB1 Prescaler = 1
|
|
* HSI Frequency(Hz) = 48000000
|
|
* PREDIV = 2
|
|
* PLLMUL = 2
|
|
* Flash Latency(WS) = 1
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void SystemClock_Config(void)
|
|
{
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
|
|
/* Select HSI48 Oscillator as PLL source */
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
|
|
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI48;
|
|
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
|
|
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
|
|
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
while(1);
|
|
}
|
|
|
|
/* Select PLL as system clock source and configure the HCLK and PCLK1 clocks dividers */
|
|
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1);
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
|
|
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1)!= HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
while(1);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief ADC configuration
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void ADC_Config(void)
|
|
{
|
|
ADC_ChannelConfTypeDef sConfig;
|
|
|
|
/* Configuration of AdcHandle init structure: ADC parameters and regular group */
|
|
AdcHandle.Instance = ADCx;
|
|
|
|
if (HAL_ADC_DeInit(&AdcHandle) != HAL_OK)
|
|
{
|
|
/* ADC initialization error */
|
|
Error_Handler();
|
|
}
|
|
|
|
AdcHandle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
|
|
AdcHandle.Init.Resolution = ADC_RESOLUTION_12B;
|
|
AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
|
AdcHandle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD; /* Sequencer will convert the number of channels configured below, successively from the lowest to the highest channel number */
|
|
AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
|
|
AdcHandle.Init.LowPowerAutoWait = DISABLE;
|
|
AdcHandle.Init.LowPowerAutoPowerOff = DISABLE;
|
|
AdcHandle.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 rank converted at each conversion trig, and because discontinuous mode is enabled */
|
|
AdcHandle.Init.DiscontinuousConvMode = ENABLE; /* Sequencer of regular group will convert the sequence in several sub-divided sequences */
|
|
AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START; /* Software start to trig the 1st conversion manually, without external event */
|
|
AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Parameter discarded because trig of conversion by software start (no external event) */
|
|
AdcHandle.Init.DMAContinuousRequests = ENABLE; /* ADC-DMA continuous requests to match with DMA configured in circular mode */
|
|
AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
|
|
/* Note: Set long sampling time due to internal channels (VrefInt, */
|
|
/* temperature sensor) constraints. Refer to device datasheet for */
|
|
/* min/typ/max values. */
|
|
AdcHandle.Init.SamplingTimeCommon = ADC_SAMPLETIME_239CYCLES_5;
|
|
|
|
if (HAL_ADC_Init(&AdcHandle) != HAL_OK)
|
|
{
|
|
/* ADC initialization error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Configuration of channel on ADCx regular group on sequencer rank 1 */
|
|
/* Note: Considering IT occurring after each ADC conversion (IT by DMA end */
|
|
/* of transfer), select sampling time and ADC clock with sufficient */
|
|
/* duration to not create an overhead situation in IRQHandler. */
|
|
sConfig.Channel = ADCx_CHANNELa;
|
|
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
|
|
|
|
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
|
|
{
|
|
/* Channel Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Configuration of channel on ADCx regular group on sequencer rank 2 */
|
|
/* Replicate previous rank settings, change only channel */
|
|
/* Note: On STM32F0xx, rank is defined by channel number. ADC Channel */
|
|
/* ADC_CHANNEL_TEMPSENSOR is on ADC channel 16, there is 1 other */
|
|
/* channel enabled with lower channel number. Therefore, */
|
|
/* ADC_CHANNEL_TEMPSENSOR will be converted by the sequencer as the */
|
|
/* 2nd rank. */
|
|
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
|
|
|
|
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
|
|
{
|
|
/* Channel Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Configuration of channel on ADCx regular group on sequencer rank 3 */
|
|
/* Replicate previous rank settings, change only channel */
|
|
/* Note: On STM32F0xx, rank is defined by channel number. ADC Channel */
|
|
/* ADC_CHANNEL_VREFINT is on ADC channel 17, there is are 2 other */
|
|
/* channels enabled with lower channel number. Therefore, */
|
|
/* ADC_CHANNEL_VREFINT will be converted by the sequencer as the */
|
|
/* 3rd rank. */
|
|
sConfig.Channel = ADC_CHANNEL_VREFINT;
|
|
|
|
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
|
|
{
|
|
/* Channel Configuration Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
|
|
}
|
|
|
|
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
|
|
/**
|
|
* @brief For this example, generate a waveform voltage on a spare DAC
|
|
* channel, so user has just to connect a wire between DAC channel
|
|
* (pin PA.04) and ADC channel (pin PA.04) to run this example.
|
|
* (this prevents the user from resorting to an external signal generator)
|
|
* This function configures the DAC and generates a constant voltage of Vdda/2.
|
|
* To modify the voltage level, use function "WaveformVoltageGenerationForTest_Update"
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void WaveformVoltageGenerationForTest_Config(void)
|
|
{
|
|
static DAC_ChannelConfTypeDef sConfig;
|
|
|
|
/*## Configure peripherals #################################################*/
|
|
/* Configuration of DACx peripheral */
|
|
DacHandle.Instance = DACx;
|
|
|
|
if (HAL_DAC_Init(&DacHandle) != HAL_OK)
|
|
{
|
|
/* DAC initialization error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Configuration of DAC channel */
|
|
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
|
|
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
|
|
|
|
if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK)
|
|
{
|
|
/* Channel configuration error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/*## Enable peripherals ####################################################*/
|
|
|
|
/* Set DAC Channel data register: channel corresponding to ADC channel CHANNELa */
|
|
/* Set DAC output to 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */
|
|
if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, RANGE_12BITS/2) != HAL_OK)
|
|
{
|
|
/* Setting value Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Enable DAC Channel: channel corresponding to ADC channel CHANNELa */
|
|
if (HAL_DAC_Start(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK)
|
|
{
|
|
/* Start Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief For this example, generate a waveform voltage on a spare DAC
|
|
* channel, so user has just to connect a wire between DAC channel
|
|
* (pin PA.04) and ADC channel (pin PA.04) to run this example.
|
|
* (this prevents the user from resorting to an external signal generator)
|
|
* This function modifies the voltage level from 0V to Vdda in 4 steps,
|
|
* incrementally at each function call.
|
|
* Circular waveform of ramp: When the maximum level is reaches,
|
|
* restart from 0V.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void WaveformVoltageGenerationForTest_Update(void)
|
|
{
|
|
static uint8_t ub_dac_steps_count = 0; /* Count number of clicks: Incremented after User Button interrupt */
|
|
|
|
/* Set DAC voltage on channel corresponding to ADCx_CHANNELa */
|
|
/* in function of user button clicks count. */
|
|
/* Set DAC output on 5 voltage levels, successively to: */
|
|
/* - minimum of full range (0 <=> ground 0V) */
|
|
/* - 1/4 of full range (4095 <=> Vdda=3.3V): 1023 <=> 0.825V */
|
|
/* - 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */
|
|
/* - 3/4 of full range (4095 <=> Vdda=3.3V): 3071 <=> 2.475V */
|
|
/* - maximum of full range (4095 <=> Vdda=3.3V) */
|
|
if (HAL_DAC_SetValue(&DacHandle,
|
|
DACx_CHANNEL_TO_ADCx_CHANNELa,
|
|
DAC_ALIGN_12B_R,
|
|
((RANGE_12BITS * ub_dac_steps_count) / 4)
|
|
) != HAL_OK)
|
|
{
|
|
/* Start Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Wait for voltage settling time */
|
|
HAL_Delay(1);
|
|
|
|
/* Manage ub_dac_steps_count to increment it in 4 steps and circularly. */
|
|
if (ub_dac_steps_count < 4)
|
|
{
|
|
ub_dac_steps_count++;
|
|
}
|
|
else
|
|
{
|
|
ub_dac_steps_count = 0;
|
|
}
|
|
|
|
}
|
|
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
|
|
|
|
|
|
/**
|
|
* @brief EXTI line detection callbacks
|
|
* @param GPIO_Pin: Specifies the pins connected EXTI line
|
|
* @retval None
|
|
*/
|
|
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
|
|
{
|
|
if (GPIO_Pin == USER_BUTTON_PIN)
|
|
{
|
|
/* Set variable to report push button event to main program */
|
|
ubUserButtonClickEvent = SET;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Conversion complete callback in non blocking mode
|
|
* @param AdcHandle : ADC handle
|
|
* @note This example shows a simple way to report end of conversion
|
|
* and get conversion result. You can add your own implementation.
|
|
* @retval None
|
|
*/
|
|
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle)
|
|
{
|
|
/* Report to main program that ADC sequencer has reached its end */
|
|
ubSequenceCompleted = SET;
|
|
}
|
|
|
|
/**
|
|
* @brief Conversion DMA half-transfer callback in non blocking mode
|
|
* @param hadc: ADC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
|
|
{
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief ADC error callback in non blocking mode
|
|
* (ADC conversion with interruption or transfer by DMA)
|
|
* @param hadc: ADC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
|
|
{
|
|
/* In case of ADC error, call main error handler */
|
|
Error_Handler();
|
|
}
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void Error_Handler(void)
|
|
{
|
|
/* User may add here some code to deal with a potential error */
|
|
|
|
/* In case of error, LED2 is toggling at a frequency of 1Hz */
|
|
while(1)
|
|
{
|
|
/* Toggle LED2 */
|
|
BSP_LED_Toggle(LED2);
|
|
HAL_Delay(500);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|