mirror of
https://github.com/STMicroelectronics/STM32CubeF0.git
synced 2025-04-26 13:49:26 +08:00
3420 lines
120 KiB
HTML
3420 lines
120 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
|
|
<head>
|
|
<title>Projects Overview</title>
|
|
<style>
|
|
.descriptionColumn { min-width:550px;}
|
|
em{color:red;font-weight: bold;}
|
|
importantLink {font-size:10pt; font-family: "Verdana","sans-serif" color:black;}
|
|
article{border: 1px solid #828282;margin: 20px 0px 20px 9px;}
|
|
body{font-family: Verdana;font-size: 10pt; color: black;margin-left: 40px;}
|
|
.picture{text-align: center}
|
|
.copyright{text-align: center}
|
|
h1{text-align: center;font-size: 20pt; font-family: Verdana; color: rgb(51, 102, 255);}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
|
|
<h1>STM32CubeF0 Firmware Examples for STM32F0xx Series</h1>
|
|
|
|
<p class="copyright">Copyright 2019 STMicroelectronics</p>
|
|
|
|
<div class="picture">
|
|
<img alt="" id="_x0000_i1025" src="../_htmresc/st_logo.png" style="border: 0px solid ; width: 104px; height: 77px;"/>
|
|
</div>
|
|
|
|
<p>The STM32CubeF0 Firmware package comes with a rich set of examples running on STMicroelectronics boards, organized by board and provided with preconfigured projects for the main supported toolchains.</p>
|
|
|
|
<div class="picture">
|
|
<img alt="" src="../_htmresc/STM32Cube.bmp"/>
|
|
</div>
|
|
|
|
<p>The examples are classified depending on the STM32Cube level they apply to, and are named as follows:</p>
|
|
|
|
<ul>
|
|
<li id="Examples"><b>Examples</b> uses only the HAL and BSP drivers (Middleware not used), having as objective to demonstrate the product/peripherals features and usage. The examples are organized per peripheral (a folder for each peripheral, ex. TIM) and offers different complexity level from basic usage of a given peripheral (ex. PWM generation using timer) till integration of several peripherals(use DAC for signals generation with synchronization from TIM6 and DMA). Board resources usage is reduced to the strict minimum.</li>
|
|
<li id="Examples_LL"><b>Examples_LL</b> uses only the LL drivers (HAL and Middleware not used), offering optimum implementation of typical use cases of the peripheral features and configuration procedures. The examples are organized per peripheral (a folder for each peripheral, ex. TIM) and runs exclusively on Nucleo board.</li>
|
|
<li id="Examples_MIX"><b>Examples_MIX</b> uses only HAL, BSP and LL drivers (Middleware are not used), having as objective to demonstrate how to use both HAL and LL APIs in the same application, to combine the advantages of both APIs (HAL offers high level and functionalities oriented APIs, with high portability level and hide product or IPs complexity to end user. While LL offers low level APIs at registers level with better optimization). The examples are organized per peripheral (a folder for each peripheral, ex. TIM) and runs exclusively on Nucleo board.</li>
|
|
<li id="Applications"><b>Applications</b> intends to demonstrate the product performance and how to use the different Middleware stacks available. The Applications are organized per Middleware (a folder for each Middleware, ex. USB Host) or product feature that need high level firmware bricks (ex. Audio). Integration Applications that use several Middleware stacks are provided as well.</li>
|
|
<li id="Demonstrations"><b>Demonstrations</b> aims to integrate and run the maximum of peripherals and Middleware stacks to showcase the product features and performance.</li>
|
|
<li>A Template project is provided to allow user to quickly build any firmware application on a given board.</li>
|
|
</ul>
|
|
|
|
<p>The examples are located under STM32Cube_FW_STM32CubeF0_VX.Y.Z\Projects\, and all of them have the same structure:</p>
|
|
|
|
<ul>
|
|
<li>\Inc folder that contains all header files.</li>
|
|
<li>\Src folder for the sources code.</li>
|
|
<li>\EWARM, \MDK-ARM and \SW4STM32 folders contain the preconfigured project for each toolchain.</li>
|
|
<li>readme.txt describing the example behavior and the environment required to run the example.</li>
|
|
</ul>
|
|
|
|
<p>To run the example, you have to do the following:</p>
|
|
|
|
<ul>
|
|
<li>Open the example using your preferred toolchain.</li>
|
|
<li>Rebuild all files and load the image into target memory.</li>
|
|
<li>Run the example by following the readme.txt instructions.</li>
|
|
<li>
|
|
<i><u>Note</u>: refer to section "Development Toolchains and Compilers" and "Supported Devices and EVAL boards" of the Firmware package release notes to know about the SW/HW environment used for the Firmware development and validation. The correct operation of the provided examples is not guaranteed on some environments, for example when using different compiler or board versions.</i>
|
|
</li>
|
|
</ul>
|
|
|
|
<p>The provided examples can be tailored to run on any compatible hardware; user simply need to update the BSP drivers for his board, if it has the same hardware functions (LED, LCD display, pushbuttons...etc.). The BSP is based on a modular architecture that allows it to be ported easily to any hardware by just implementing the low level routines.</p>
|
|
|
|
<p>The table below contains the list of examples provided within STM32CubeF0 Firmware package.</p>
|
|
|
|
<p id="STM32F0xxImportantLink">
|
|
<div>Reference materials available on <a href="http://www.st.com/stm32cubefw" target="_blank">www.st.com/stm32cubefw</a></div>
|
|
<ul>
|
|
<li><a href="http://www.st.com/stm32cubefw" target="_blank">Latest release</a> of STM32CubeF0 Firmware package.</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00119724.pdf" target="_blank">UM1779</a>: Getting started with the STM32CubeF0 firmware package for the STM32F0 series.</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00122015.pdf" target="_blank">UM1785</a>: Description of STM32F0xx HAL drivers.</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00122017.pdf" target="_blank">UM1787</a>: STM32CubeF0 Nucleo demonstration firmware.</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00134527.pdf" target="_blank">UM1819</a>: Demonstration firmware for STM32091C-EVAL board .</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00108129.pdf" target="_blank">UM1734</a>: STM32Cube USB Device library.</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105259.pdf" target="_blank">UM1721</a>: Developing Applications on STM32Cube with FatFs.</li>
|
|
<li><a href="http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105262.pdf" target="_blank">UM1722</a>: Developing Applications on STM32Cube with RTOS.</li>
|
|
</ul>
|
|
</p>
|
|
<table border='1' bgcolor='#f0f0fF' >
|
|
<tr align=center style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;">
|
|
<td><b>Level</b></td>
|
|
<td><b>Module Name</b></td>
|
|
<td><b>Project Name</b></td>
|
|
<td class="descriptionColumn"><b>Description</b></td>
|
|
<td>STM32072B_EVAL</td>
|
|
<td>STM32F072B-Discovery</td>
|
|
<td>STM32F031K6-Nucleo</td>
|
|
<td>STM32F030R8-Nucleo</td>
|
|
<td>STM32F070RB-Nucleo</td>
|
|
<td>STM32F072RB-Nucleo</td>
|
|
<td>STM32F0308-Discovery</td>
|
|
<td>STM32F042K6-Nucleo</td>
|
|
<td>STM32F091RC-Nucleo</td>
|
|
<td>STM32091C_EVAL</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=2><p id="Templates">Templates</p></td>
|
|
<td align=left rowspan=1><p id="-">-</p></td>
|
|
<td align=left><p id="Starter project">Starter project</p></td>
|
|
<td align=left>
|
|
This projects provides a reference template that can be used to build any firmware application.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of templates: 10</b></td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=2><p id="Templates_LL">Templates_LL</p></td>
|
|
<td align=left rowspan=1><p id="-">-</p></td>
|
|
<td align=left><p id="Starter project">Starter project</p></td>
|
|
<td align=left>
|
|
This projects provides a reference template through the LL API that can be used to build any firmware application.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of templates_ll: 10</b></td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=69><p id="Examples">Examples</p></td>
|
|
<td align=left rowspan=1><p id="-">-</p></td>
|
|
<td align=left><p id="BSP">BSP</p></td>
|
|
<td align=left>
|
|
This example provides a description of how to use the different BSP drivers.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=6><p id="ADC">ADC</p></td>
|
|
<td align=left><p id="ADC_AnalogWatchdog">ADC_AnalogWatchdog</p></td>
|
|
<td align=left>
|
|
How to use the ADC peripheral to perform conversions with an analog watchdog
|
|
and out-of-window interrupts enabled.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_DMA_Transfer">ADC_DMA_Transfer</p></td>
|
|
<td align=left>
|
|
How to configure and use the ADC to convert an external analog input and get
|
|
the result using a DMA transfer through the HAL API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_LowPower">ADC_LowPower</p></td>
|
|
<td align=left>
|
|
How to use the ADC peripheral to perform conversions with ADC low-power modes:
|
|
auto-wait and auto-power off.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_RegularConversion_Polling">ADC_RegularConversion_Polling</p></td>
|
|
<td align=left>
|
|
How to use the ADC in Polling mode to convert data through the HAL API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_Sequencer">ADC_Sequencer</p></td>
|
|
<td align=left>
|
|
How to use the ADC peripheral with a sequencer to convert several channels.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_TriggerMode">ADC_TriggerMode</p></td>
|
|
<td align=left>
|
|
How to use ADC1 and TIM2 to continuously convert data from an ADC channel.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="CAN">CAN</p></td>
|
|
<td align=left><p id="CAN_Networking">CAN_Networking</p></td>
|
|
<td align=left>
|
|
How to configure the CAN peripheral to send and receive CAN frames in
|
|
normal mode.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="CEC">CEC</p></td>
|
|
<td align=left><p id="CEC_DataExchange">CEC_DataExchange</p></td>
|
|
<td align=left>
|
|
How to configure and use the CEC peripheral to receive and transmit messages.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CEC_ListenMode">CEC_ListenMode</p></td>
|
|
<td align=left>
|
|
How to configure and use the CEC peripheral to receive and transmit messages
|
|
between two boards, while a third board (the spy device) listens but doesn't
|
|
acknowledge the received messages.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CEC_MultiAddress">CEC_MultiAddress</p></td>
|
|
<td align=left>
|
|
How to configure and use the CEC peripheral to receive and transmit messages
|
|
in the case where one device supports two distinct logical addresses at the
|
|
same time.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="COMP">COMP</p></td>
|
|
<td align=left><p id="COMP_AnalogWatchdog">COMP_AnalogWatchdog</p></td>
|
|
<td align=left>
|
|
How to use a pair of comparator peripherals to compare a voltage level applied on
|
|
a GPIO pin to two thresholds: the internal voltage reference (VREFINT) and a fraction
|
|
of the internal voltage reference (VREFINT/4), in interrupt mode.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="COMP_Interrupt">COMP_Interrupt</p></td>
|
|
<td align=left>
|
|
How to use a comparator peripheral to compare a voltage level applied on a GPIO
|
|
pin to the the internal voltage reference (VREFINT), in interrupt mode.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=4><p id="CRC">CRC</p></td>
|
|
<td align=left><p id="CRC_Bytes_Stream_7bit_CRC">CRC_Bytes_Stream_7bit_CRC</p></td>
|
|
<td align=left>
|
|
How to configure the CRC using the HAL API. The CRC (cyclic
|
|
redundancy check) calculation unit computes 7-bit CRC codes derived from buffers
|
|
of 8-bit data (bytes). The user-defined generating polynomial is manually set
|
|
to 0x65, that is, X^7 + X^6 + X^5 + X^2 + 1, as used in the Train Communication
|
|
Network, IEC 60870-5[17].
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CRC_Data_Reversing_16bit_CRC">CRC_Data_Reversing_16bit_CRC</p></td>
|
|
<td align=left>
|
|
How to configure the CRC using the HAL API. The CRC (cyclic
|
|
redundancy check) calculation unit computes a 16-bit CRC code derived from a
|
|
buffer of 8-bit data (bytes). Input and output data reversal features are
|
|
enabled. The user-defined generating polynomial is manually set to 0x1021,
|
|
that is, X^16 + X^12 + X^5 + 1 which is the CRC-CCITT generating polynomial.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CRC_Example">CRC_Example</p></td>
|
|
<td align=left>
|
|
How to configure the CRC using the HAL API. The CRC (cyclic
|
|
redundancy check) calculation unit computes the CRC code of a given buffer of
|
|
32-bit data words, using a fixed generator polynomial (0x4C11DB7).
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CRC_UserDefinedPolynomial">CRC_UserDefinedPolynomial</p></td>
|
|
<td align=left>
|
|
How to configure the CRC using the HAL API. The CRC (cyclic
|
|
redundancy check) calculation unit computes the 8-bit CRC code for a given
|
|
buffer of 32-bit data words, based on a user-defined generating polynomial.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="Cortex">Cortex</p></td>
|
|
<td align=left><p id="CORTEXM_ProcessStack">CORTEXM_ProcessStack</p></td>
|
|
<td align=left>
|
|
How to modify the Thread mode stack. Thread mode is entered on reset, and can be
|
|
entered as a result of an exception return.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CORTEXM_SysTick">CORTEXM_SysTick</p></td>
|
|
<td align=left>
|
|
How to use the default SysTick configuration with a 1 ms timebase to toggle LEDs.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="DAC">DAC</p></td>
|
|
<td align=left><p id="DAC_SignalsGeneration">DAC_SignalsGeneration</p></td>
|
|
<td align=left>
|
|
How to use the DAC peripheral to generate several signals using the DMA
|
|
controller.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="DAC_SimpleConversion">DAC_SimpleConversion</p></td>
|
|
<td align=left>
|
|
How to use the DAC peripheral to do a simple conversion.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="DMA">DMA</p></td>
|
|
<td align=left><p id="DMA_FLASHToRAM">DMA_FLASHToRAM</p></td>
|
|
<td align=left>
|
|
How to use a DMA to transfer a word data buffer from Flash memory to embedded
|
|
SRAM through the HAL API
|
|
|
|
At the beginning of the main program the HAL_Init() function is called to reset
|
|
all the peripherals, initialize the Flash interface and the systick.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="FLASH">FLASH</p></td>
|
|
<td align=left><p id="FLASH_EraseProgram">FLASH_EraseProgram</p></td>
|
|
<td align=left>
|
|
How to configure and use the FLASH HAL API to erase and program the internal
|
|
Flash memory.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FLASH_WriteProtection">FLASH_WriteProtection</p></td>
|
|
<td align=left>
|
|
How to configure and use the FLASH HAL API to enable and disable the write
|
|
protection of the internal Flash memory.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="GPIO">GPIO</p></td>
|
|
<td align=left><p id="GPIO_EXTI">GPIO_EXTI</p></td>
|
|
<td align=left>
|
|
How to configure external interrupt lines.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="GPIO_IOToggle">GPIO_IOToggle</p></td>
|
|
<td align=left>
|
|
How to configure and use GPIOs through the HAL API
|
|
|
|
PA.05 IO (configured in output pushpull mode) toggles in a forever loop.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="HAL">HAL</p></td>
|
|
<td align=left><p id="HAL_TimeBase_RTC_ALARM">HAL_TimeBase_RTC_ALARM</p></td>
|
|
<td align=left>
|
|
How to customize HAL using RTC alarm as main source of time base,
|
|
instead of Systick.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="HAL_TimeBase_RTC_WKUP">HAL_TimeBase_RTC_WKUP</p></td>
|
|
<td align=left>
|
|
How to customize HAL using RTC wakeup as main source of time base,
|
|
instead of Systick.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="HAL_TimeBase_TIM">HAL_TimeBase_TIM</p></td>
|
|
<td align=left>
|
|
How to customize HAL using a general-purpose timer as main source of time base
|
|
instead of Systick.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=8><p id="I2C">I2C</p></td>
|
|
<td align=left><p id="I2C_EEPROM">I2C_EEPROM</p></td>
|
|
<td align=left>
|
|
How to handle I2C data buffer transmission/reception with DMA. In the example,
|
|
the device communicates with an I2C EEPROM memory.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_AdvComIT">I2C_TwoBoards_AdvComIT</p></td>
|
|
<td align=left>
|
|
How to handle I2C data buffer transmission/reception between two boards,
|
|
using an interrupt.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_ComDMA">I2C_TwoBoards_ComDMA</p></td>
|
|
<td align=left>
|
|
How to handle I2C data buffer transmission/reception between two boards,
|
|
via DMA.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_ComIT">I2C_TwoBoards_ComIT</p></td>
|
|
<td align=left>
|
|
How to handle I2C data buffer transmission/reception between two boards,
|
|
using an interrupt.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_ComPolling">I2C_TwoBoards_ComPolling</p></td>
|
|
<td align=left>
|
|
How to handle I2C data buffer transmission/reception between two boards,
|
|
in polling mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_RestartAdvComIT">I2C_TwoBoards_RestartAdvComIT</p></td>
|
|
<td align=left>
|
|
How to perform multiple I2C data buffer transmission/reception between two boards,
|
|
in interrupt mode and with restart condition.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_RestartComIT">I2C_TwoBoards_RestartComIT</p></td>
|
|
<td align=left>
|
|
How to handle single I2C data buffer transmission/reception between two boards,
|
|
in interrupt mode and with restart condition.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_WakeUpFromStop">I2C_WakeUpFromStop</p></td>
|
|
<td align=left>
|
|
How to handle I2C data buffer transmission/reception between two boards,
|
|
using an interrupt when the device is in Stop mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="IWDG">IWDG</p></td>
|
|
<td align=left><p id="IWDG_Reset">IWDG_Reset</p></td>
|
|
<td align=left>
|
|
How to handle the IWDG reload counter and simulate a software fault that generates
|
|
an MCU IWDG reset after a preset laps of time.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="IWDG_WindowMode">IWDG_WindowMode</p></td>
|
|
<td align=left>
|
|
How to periodically update the IWDG reload counter and simulate a software fault that generates
|
|
an MCU IWDG reset after a preset laps of time.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=4><p id="PWR">PWR</p></td>
|
|
<td align=left><p id="PWR_CurrentConsumption">PWR_CurrentConsumption</p></td>
|
|
<td align=left>
|
|
How to configure the system to measure the current consumption in different
|
|
low-power modes.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="PWR_PVD">PWR_PVD</p></td>
|
|
<td align=left>How to configure the programmable voltage detector by using an external interrupt
|
|
line. External DC supply must be used to supply Vdd.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="PWR_STANDBY">PWR_STANDBY</p></td>
|
|
<td align=left>
|
|
How to enter the Standby mode and wake up from this mode by using an external
|
|
reset or the WKUP pin.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="PWR_STOP">PWR_STOP</p></td>
|
|
<td align=left>
|
|
How to enter the Stop mode and wake up from this mode by using the RTC wakeup
|
|
timer event or an interrupt.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="RCC">RCC</p></td>
|
|
<td align=left><p id="RCC_CRS_Synchronization_IT">RCC_CRS_Synchronization_IT</p></td>
|
|
<td align=left>
|
|
Configuration of the clock recovery service (CRS) in Interrupt mode, using the RCC HAL API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RCC_CRS_Synchronization_Polling">RCC_CRS_Synchronization_Polling</p></td>
|
|
<td align=left>
|
|
Configuration of the clock recovery service (CRS) in Polling mode, using the RCC HAL API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RCC_ClockConfig">RCC_ClockConfig</p></td>
|
|
<td align=left>
|
|
Configuration of the system clock (SYSCLK) and modification of the clock settings in Run mode, using the RCC HAL API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="RTC">RTC</p></td>
|
|
<td align=left><p id="RTC_Alarm">RTC_Alarm</p></td>
|
|
<td align=left>
|
|
Configuration and generation of an RTC alarm using the RTC HAL API.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_Calendar">RTC_Calendar</p></td>
|
|
<td align=left>
|
|
Configuration of the calendar using the RTC HAL API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_Tamper">RTC_Tamper</p></td>
|
|
<td align=left>
|
|
Configuration of the RTC HAL API to write/read data to/from RTC Backup registers.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="SMBUS">SMBUS</p></td>
|
|
<td align=left><p id="SMBUS_TSENSOR">SMBUS_TSENSOR</p></td>
|
|
<td align=left>
|
|
MBUS data buffer transmission/reception using an interrupt. The STM32 microcontroller communicates with an SMBUS temperature sensor.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="SPI">SPI</p></td>
|
|
<td align=left><p id="SPI_FullDuplex_ComDMA">SPI_FullDuplex_ComDMA</p></td>
|
|
<td align=left>
|
|
Data buffer transmission/reception between two boards via SPI using DMA.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_FullDuplex_ComIT">SPI_FullDuplex_ComIT</p></td>
|
|
<td align=left>
|
|
Data buffer transmission/reception between two boards via SPI using Interrupt mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_FullDuplex_ComPolling">SPI_FullDuplex_ComPolling</p></td>
|
|
<td align=left>
|
|
Data buffer transmission/reception between two boards via SPI using Polling mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=6><p id="TIM">TIM</p></td>
|
|
<td align=left><p id="TIM_ComplementarySignals">TIM_ComplementarySignals</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM1 peripheral to generate three
|
|
complementary signals, insert a predefined deadtime value, use the break
|
|
feature, and lock the break and dead-time configuration.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_DMA">TIM_DMA</p></td>
|
|
<td align=left>
|
|
Use of the DMA with TIMER Update request
|
|
to transfer data from memory to TIMER Capture Compare Register 3 (TIMx_CCR3).
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_InputCapture">TIM_InputCapture</p></td>
|
|
<td align=left>
|
|
Use of the TIM peripheral to measure an external signal frequency.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_PWMInput">TIM_PWMInput</p></td>
|
|
<td align=left>
|
|
Use of the TIM peripheral to measure the frequency and
|
|
duty cycle of an external signal.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_PWMOutput">TIM_PWMOutput</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM peripheral in PWM (pulse width modulation) mode.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_TimeBase">TIM_TimeBase</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM peripheral to generate a timebase of
|
|
one second with the corresponding interrupt request.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="TSC">TSC</p></td>
|
|
<td align=left><p id="TSC_BasicAcquisition_Interrupt">TSC_BasicAcquisition_Interrupt</p></td>
|
|
<td align=left>
|
|
Use of he TSC to perform continuous acquisitions
|
|
of two channels in Interrupt mode.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TSC_BasicAcquisition_Polling">TSC_BasicAcquisition_Polling</p></td>
|
|
<td align=left>
|
|
Use of the TSC to perform continuous acquisitions
|
|
of one channel in Polling mode.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=6><p id="UART">UART</p></td>
|
|
<td align=left><p id="UART_HyperTerminal_DMA">UART_HyperTerminal_DMA</p></td>
|
|
<td align=left>
|
|
UART transmission (transmit/receive) in DMA mode
|
|
between a board and an HyperTerminal PC application.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UART_OneBoards_8UART">UART_OneBoards_8UART</p></td>
|
|
<td align=left>
|
|
This example guides you through the different configuration steps by mean of HAL API
|
|
to ensure Data buffer transmission and reception
|
|
|
|
At the beginning of the main program the HAL_Init() function is called to reset
|
|
all the peripherals, initialize the Flash interface and the systick.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UART_TwoBoards_ComDMA">UART_TwoBoards_ComDMA</p></td>
|
|
<td align=left>
|
|
UART transmission (transmit/receive) in DMA mode
|
|
between two boards.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UART_TwoBoards_ComIT">UART_TwoBoards_ComIT</p></td>
|
|
<td align=left>
|
|
UART transmission (transmit/receive) in Interrupt mode
|
|
between two boards.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UART_TwoBoards_ComPolling">UART_TwoBoards_ComPolling</p></td>
|
|
<td align=left>
|
|
UART transmission (transmit/receive) in Polling mode
|
|
between two boards.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UART_WakeUpFromStop">UART_WakeUpFromStop</p></td>
|
|
<td align=left>
|
|
Configuration of an UART to wake up the MCU from STOP mode
|
|
when a given stimulus is received.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="WWDG">WWDG</p></td>
|
|
<td align=left><p id="WWDG_Example">WWDG_Example</p></td>
|
|
<td align=left>
|
|
Configuration of the HAL API to periodically update the WWDG counter and simulate a software fault that
|
|
generates an MCU WWDG reset when a predefined time period has elapsed.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of examples: 349</b></td>
|
|
<td>41</td>
|
|
<td>46</td>
|
|
<td>17</td>
|
|
<td>30</td>
|
|
<td>33</td>
|
|
<td>45</td>
|
|
<td>29</td>
|
|
<td>17</td>
|
|
<td>46</td>
|
|
<td>45</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=75><p id="Examples_LL">Examples_LL</p></td>
|
|
<td align=left rowspan=10><p id="ADC">ADC</p></td>
|
|
<td align=left><p id="ADC_AnalogWatchdog">ADC_AnalogWatchdog</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral with an ADC analog watchdog to monitor a channel
|
|
and detect when the corresponding conversion data is outside the window
|
|
thresholds.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_ContinuousConversion_TriggerSW">ADC_ContinuousConversion_TriggerSW</p></td>
|
|
<td align=left>How to use an ADC peripheral to perform continuous ADC conversions on a
|
|
channel, from a software start.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_ContinuousConversion_TriggerSW_Init">ADC_ContinuousConversion_TriggerSW_Init</p></td>
|
|
<td align=left>How to use an ADC peripheral to perform continuous ADC conversions on a
|
|
channel, from a software start.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_ContinuousConversion_TriggerSW_LowPower">ADC_ContinuousConversion_TriggerSW_LowPower</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral with ADC low-power features.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_MultiChannelSingleConversion">ADC_MultiChannelSingleConversion</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral to convert several channels. ADC conversions are
|
|
performed successively in a scan sequence.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_SingleConversion_TriggerSW">ADC_SingleConversion_TriggerSW</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral to perform a single ADC conversion on a channel
|
|
at each software start. This example uses the polling programming model (for
|
|
interrupt or DMA programming models, please refer to other examples).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_SingleConversion_TriggerSW_DMA">ADC_SingleConversion_TriggerSW_DMA</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral to perform a single ADC conversion on a channel,
|
|
at each software start. This example uses the DMA programming model
|
|
(for polling or interrupt programming models, refer to other examples).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_SingleConversion_TriggerSW_IT">ADC_SingleConversion_TriggerSW_IT</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral to perform a single ADC conversion on a channel,
|
|
at each software start. This example uses the interrupt programming model
|
|
(for polling or DMA programming models, please refer to other examples).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_SingleConversion_TriggerTimer_DMA">ADC_SingleConversion_TriggerTimer_DMA</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral to perform a single ADC conversion on a channel
|
|
at each trigger event from a timer. Converted data is indefinitely transferred
|
|
by DMA into a table (circular mode).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="ADC_TemperatureSensor">ADC_TemperatureSensor</p></td>
|
|
<td align=left>
|
|
How to use an ADC peripheral to perform a single ADC conversion on the
|
|
internal temperature sensor and calculate the temperature in degrees Celsius.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=4><p id="COMP">COMP</p></td>
|
|
<td align=left><p id="COMP_CompareGpioVsVrefInt_IT">COMP_CompareGpioVsVrefInt_IT</p></td>
|
|
<td align=left>
|
|
How to use a comparator peripheral to compare a voltage level applied on a GPIO
|
|
pin to the internal voltage reference (VREFINT), in interrupt mode. This example
|
|
is based on the STM32F0xx COMP LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="COMP_CompareGpioVsVrefInt_IT_Init">COMP_CompareGpioVsVrefInt_IT_Init</p></td>
|
|
<td align=left>
|
|
How to use a comparator peripheral to compare a voltage level applied on a GPIO
|
|
pin to the the internal voltage reference (VREFINT), in interrupt mode. This example
|
|
is based on the STM32F0xx COMP LL API. The peripheral initialization
|
|
uses the LL initialization function to demonstrate LL init usage.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="COMP_CompareGpioVsVrefInt_OutputGpio">COMP_CompareGpioVsVrefInt_OutputGpio</p></td>
|
|
<td align=left>
|
|
How to use a comparator peripheral to compare a voltage level applied on a GPIO
|
|
pin to the internal voltage reference (VREFINT). The comparator output is connected
|
|
to a GPIO. This example is based on the STM32F0xx COMP LL API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="COMP_CompareGpioVsVrefInt_Window_IT">COMP_CompareGpioVsVrefInt_Window_IT</p></td>
|
|
<td align=left>
|
|
How to use a pair of comparator peripherals to compare a voltage level applied on
|
|
a GPIO pin to two thresholds: the internal voltage reference (VREFINT) and a fraction
|
|
of the internal voltage reference (VREFINT/2), in interrupt mode. This example is
|
|
based on the STM32F0xx COMP LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="CRC">CRC</p></td>
|
|
<td align=left><p id="CRC_CalculateAndCheck">CRC_CalculateAndCheck</p></td>
|
|
<td align=left>
|
|
How to configure the CRC calculation unit to compute a CRC code for a given data
|
|
buffer, based on a fixed generator polynomial (default value 0x4C11DB7). The
|
|
peripheral initialization is done using LL unitary service functions for
|
|
optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CRC_UserDefinedPolynomial">CRC_UserDefinedPolynomial</p></td>
|
|
<td align=left>
|
|
How to configure and use the CRC calculation unit to compute an 8-bit CRC code
|
|
for a given data buffer, based on a user-defined generating polynomial. The
|
|
peripheral initialization is done using LL unitary service functions for
|
|
optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="CRS">CRS</p></td>
|
|
<td align=left><p id="CRS_Synchronization_IT">CRS_Synchronization_IT</p></td>
|
|
<td align=left>
|
|
How to configure the clock recovery service in IT mode through the
|
|
STM32F0xx CRS LL API. The peripheral initialization uses LL unitary
|
|
service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CRS_Synchronization_Polling">CRS_Synchronization_Polling</p></td>
|
|
<td align=left>
|
|
How to configure the clock recovery service in polling mode through the
|
|
STM32F0xx CRS LL API. The peripheral initialization uses LL unitary
|
|
service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="DAC">DAC</p></td>
|
|
<td align=left><p id="DAC_GenerateConstantSignal_TriggerSW">DAC_GenerateConstantSignal_TriggerSW</p></td>
|
|
<td align=left>
|
|
How to use the DAC peripheral to generate a constant voltage signal. This
|
|
example is based on the STM32F0xx DAC LL API. The peripheral
|
|
initialization uses LL unitary service functions for optimization purposes
|
|
(performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="DAC_GenerateWaveform_TriggerHW">DAC_GenerateWaveform_TriggerHW</p></td>
|
|
<td align=left>
|
|
How to use the DAC peripheral to generate a voltage waveform from a digital data
|
|
stream transfered by DMA. This example is based on the STM32F0xx
|
|
DAC LL API. The peripheral initialization uses LL unitary service
|
|
functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="DAC_GenerateWaveform_TriggerHW_Init">DAC_GenerateWaveform_TriggerHW_Init</p></td>
|
|
<td align=left>
|
|
How to use the DAC peripheral to generate a voltage waveform from a digital data
|
|
stream transfered by DMA. This example is based on the STM32F0xx
|
|
DAC LL API. The peripheral initialization uses LL initialization
|
|
functions to demonstrate LL init usage.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="DMA">DMA</p></td>
|
|
<td align=left><p id="DMA_CopyFromFlashToMemory">DMA_CopyFromFlashToMemory</p></td>
|
|
<td align=left>
|
|
How to use a DMA channel to transfer a word data buffer
|
|
from Flash memory to embedded SRAM. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="DMA_CopyFromFlashToMemory_Init">DMA_CopyFromFlashToMemory_Init</p></td>
|
|
<td align=left>
|
|
How to use a DMA channel to transfer a word data buffer
|
|
from Flash memory to embedded SRAM. The peripheral initialization uses LL
|
|
initialization functions to demonstrate LL init usage.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="EXTI">EXTI</p></td>
|
|
<td align=left><p id="EXTI_ToggleLedOnIT">EXTI_ToggleLedOnIT</p></td>
|
|
<td align=left>
|
|
How to configure the EXTI and use GPIOs to toggle the user LEDs
|
|
available on the board when a user button is pressed. It is based on the
|
|
STM32F0xx LL API. The peripheral initialization uses LL unitary service
|
|
functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="EXTI_ToggleLedOnIT_Init">EXTI_ToggleLedOnIT_Init</p></td>
|
|
<td align=left>
|
|
How to configure the EXTI and use GPIOs to toggle the user LEDs
|
|
available on the board when a user button is pressed. This example is
|
|
based on the STM32F0xx LL API. The peripheral initialization uses
|
|
LL initialization functions to demonstrate LL init usage.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="GPIO">GPIO</p></td>
|
|
<td align=left><p id="GPIO_InfiniteLedToggling">GPIO_InfiniteLedToggling</p></td>
|
|
<td align=left>
|
|
How to configure and use GPIOs to toggle the on-board user LEDs
|
|
every 250 ms. This example is based on the STM32F0xx LL API. The peripheral
|
|
is initialized with LL unitary service functions to optimize
|
|
for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="GPIO_InfiniteLedToggling_Init">GPIO_InfiniteLedToggling_Init</p></td>
|
|
<td align=left>
|
|
How to configure and use GPIOs to toggle the on-board user LEDs
|
|
every 250 ms. This example is based on the STM32F0xx LL API. The peripheral
|
|
is initialized with LL initialization function to demonstrate LL init usage
|
|
|
|
PA.05 IO (configured in output pushpull mode) toggles in a forever loop.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=9><p id="I2C">I2C</p></td>
|
|
<td align=left><p id="I2C_OneBoard_AdvCommunication_DMAAndIT">I2C_OneBoard_AdvCommunication_DMAAndIT</p></td>
|
|
<td align=left>
|
|
How to exchange data between an I2C master device in DMA mode and an I2C slave
|
|
device in interrupt mode. The peripheral is initialized with LL unitary service
|
|
functions to optimize for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_OneBoard_Communication_DMAAndIT">I2C_OneBoard_Communication_DMAAndIT</p></td>
|
|
<td align=left>
|
|
How to transmit data bytes from an I2C master device using DMA mode
|
|
to an I2C slave device using interrupt mode. The peripheral is initialized with
|
|
LL unitary service functions to optimize for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_OneBoard_Communication_IT">I2C_OneBoard_Communication_IT</p></td>
|
|
<td align=left>
|
|
How to handle the reception of one data byte from an I2C slave device
|
|
by an I2C master device. Both devices operate in interrupt mode. The peripheral is initialized
|
|
with LL unitary service functions to optimize for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_OneBoard_Communication_IT_Init">I2C_OneBoard_Communication_IT_Init</p></td>
|
|
<td align=left>
|
|
How to handle the reception of one data byte from an I2C slave device
|
|
by an I2C master device. Both devices operate in interrupt mode. The peripheral is initialized
|
|
with LL initialization function to demonstrate LL init usage.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_OneBoard_Communication_PollingAndIT">I2C_OneBoard_Communication_PollingAndIT</p></td>
|
|
<td align=left>
|
|
How to transmit data bytes from an I2C master device using polling mode
|
|
to an I2C slave device using interrupt mode. The peripheral is initialized
|
|
with LL unitary service functions to optimize for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_MasterRx_SlaveTx_IT">I2C_TwoBoards_MasterRx_SlaveTx_IT</p></td>
|
|
<td align=left>
|
|
How to handle the reception of one data byte from an I2C slave device
|
|
by an I2C master device. Both devices operate in interrupt mode. The peripheral
|
|
is initialized with LL unitary service functions to optimize for performance
|
|
and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_MasterTx_SlaveRx">I2C_TwoBoards_MasterTx_SlaveRx</p></td>
|
|
<td align=left>
|
|
How to transmit data bytes from an I2C master device using polling mode
|
|
to an I2C slave device using interrupt mode. The peripheral is initialized
|
|
with LL unitary service functions to optimize for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_MasterTx_SlaveRx_DMA">I2C_TwoBoards_MasterTx_SlaveRx_DMA</p></td>
|
|
<td align=left>
|
|
How to transmit data bytes from an I2C master device using DMA mode
|
|
to an I2C slave device using DMA mode. The peripheral is initialized
|
|
with LL unitary service functions to optimize for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="I2C_TwoBoards_WakeUpFromStop_IT">I2C_TwoBoards_WakeUpFromStop_IT</p></td>
|
|
<td align=left>
|
|
How to handle the reception of a data byte from an I2C slave device in
|
|
Stop mode using IT mode by an I2C master device, both using interrupt mode. The
|
|
peripheral is initialized with LL unitary service functions to optimize for
|
|
performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="IWDG">IWDG</p></td>
|
|
<td align=left><p id="IWDG_RefreshUntilUserEvent">IWDG_RefreshUntilUserEvent</p></td>
|
|
<td align=left>
|
|
How to configure the IWDG peripheral to ensure periodical counter update and
|
|
generate an MCU IWDG reset when a user button is pressed. The peripheral
|
|
is initialized with LL unitary service functions to optimize
|
|
for performance and size.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="PWR">PWR</p></td>
|
|
<td align=left><p id="PWR_EnterStandbyMode">PWR_EnterStandbyMode</p></td>
|
|
<td align=left>
|
|
How to enter the Standby mode and wake up from this mode by using an external
|
|
reset or a wakeup interrupt.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="PWR_EnterStopMode">PWR_EnterStopMode</p></td>
|
|
<td align=left>
|
|
How to enter the system in STOP_LPREGU mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="RCC">RCC</p></td>
|
|
<td align=left><p id="RCC_OutputSystemClockOnMCO">RCC_OutputSystemClockOnMCO</p></td>
|
|
<td align=left>
|
|
Configuration of MCO pin (PA8) to output the system clock.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RCC_UseHSEasSystemClock">RCC_UseHSEasSystemClock</p></td>
|
|
<td align=left>
|
|
Use of the RCC LL API to start the HSE and use it as system clock.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RCC_UseHSI_PLLasSystemClock">RCC_UseHSI_PLLasSystemClock</p></td>
|
|
<td align=left>
|
|
Modification of the PLL parameters in run time.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=6><p id="RTC">RTC</p></td>
|
|
<td align=left><p id="RTC_Alarm">RTC_Alarm</p></td>
|
|
<td align=left>
|
|
Configuration of the RTC LL API to configure and generate an alarm using the RTC peripheral. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_Alarm_Init">RTC_Alarm_Init</p></td>
|
|
<td align=left>
|
|
Configuration of the RTC LL API to configure and generate an alarm using the RTC peripheral. The peripheral
|
|
initialization uses the LL initialization function.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_Calendar">RTC_Calendar</p></td>
|
|
<td align=left>
|
|
Configuration of the LL API to set the RTC calendar. The peripheral initialization uses LL unitary service
|
|
functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_ExitStandbyWithWakeUpTimer">RTC_ExitStandbyWithWakeUpTimer</p></td>
|
|
<td align=left>
|
|
Configuration of the RTC to wake up from Standby mode
|
|
using the RTC Wakeup timer. The peripheral initialization uses LL unitary service
|
|
functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_Tamper">RTC_Tamper</p></td>
|
|
<td align=left>
|
|
Configuration of the Tamper using the RTC LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="RTC_TimeStamp">RTC_TimeStamp</p></td>
|
|
<td align=left>
|
|
Configuration of the Timestamp using the RTC LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=5><p id="SPI">SPI</p></td>
|
|
<td align=left><p id="SPI_OneBoard_HalfDuplex_DMA">SPI_OneBoard_HalfDuplex_DMA</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and SPI peripherals to transmit
|
|
bytes from an SPI Master device to an SPI Slave device in DMA mode. This example
|
|
is based on the STM32F0xx SPI LL API. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_OneBoard_HalfDuplex_DMA_Init">SPI_OneBoard_HalfDuplex_DMA_Init</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and SPI peripherals to transmit
|
|
bytes from an SPI Master device to an SPI Slave device in DMA mode. This example
|
|
is based on the STM32F0xx SPI LL API. The peripheral initialization uses the
|
|
LL initialization function to demonstrate LL init usage.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_OneBoard_HalfDuplex_IT">SPI_OneBoard_HalfDuplex_IT</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and SPI peripherals to transmit bytes
|
|
from an SPI Master device to an SPI Slave device in Interrupt mode. This example
|
|
is based on the STM32F0xx SPI LL API. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_TwoBoards_FullDuplex_DMA">SPI_TwoBoards_FullDuplex_DMA</p></td>
|
|
<td align=left>
|
|
Data buffer transmission and reception via SPI using DMA mode. This example is
|
|
based on the STM32F0xx SPI LL API. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_TwoBoards_FullDuplex_IT">SPI_TwoBoards_FullDuplex_IT</p></td>
|
|
<td align=left>
|
|
Data buffer transmission and reception via SPI using Interrupt mode. This
|
|
example is based on the STM32F0xx SPI LL API. The peripheral
|
|
initialization uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=8><p id="TIM">TIM</p></td>
|
|
<td align=left><p id="TIM_BreakAndDeadtime">TIM_BreakAndDeadtime</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM peripheral to
|
|
three center-aligned PWM and complementary PWM signals,
|
|
insert a defined deadtime value,
|
|
use the break feature,
|
|
and lock the break and dead-time configuration.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_DMA">TIM_DMA</p></td>
|
|
<td align=left>
|
|
Use of the DMA with a timer update request
|
|
to transfer data from memory to Timer Capture Compare Register 3 (TIMx_CCR3). This
|
|
example is based on the STM32F0xx TIM LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_InputCapture">TIM_InputCapture</p></td>
|
|
<td align=left>
|
|
Use of the TIM peripheral to measure a periodic signal frequency
|
|
provided either by an external signal generator or by
|
|
another timer instance. This example is based on the STM32F0xx TIM
|
|
LL API. The peripheral initialization uses LL unitary service functions
|
|
for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_OnePulse">TIM_OnePulse</p></td>
|
|
<td align=left>
|
|
Configuration of a timer to generate a positive pulse in
|
|
Output Compare mode with a length of tPULSE and after a delay of tDELAY. This example
|
|
is based on the STM32F0xx TIM LL API. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_OutputCompare">TIM_OutputCompare</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM peripheral to generate an output
|
|
waveform in different output compare modes. This example is based on the
|
|
STM32F0xx TIM LL API. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_PWMOutput">TIM_PWMOutput</p></td>
|
|
<td align=left>
|
|
Use of a timer peripheral to generate a
|
|
PWM output signal and update the PWM duty cycle. This example is based on the
|
|
STM32F0xx TIM LL API. The peripheral initialization uses
|
|
LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_PWMOutput_Init">TIM_PWMOutput_Init</p></td>
|
|
<td align=left>
|
|
Use of a timer peripheral to generate a
|
|
PWM output signal and update the PWM duty cycle. This example is based on the
|
|
STM32F0xx TIM LL API. The peripheral initialization uses
|
|
LL initialization function to demonstrate LL init.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TIM_TimeBase">TIM_TimeBase</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM peripheral to generate a timebase. This
|
|
example using the STM32F0xx TIM LL API.The peripheral initialization
|
|
uses LL unitary services functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=10><p id="USART">USART</p></td>
|
|
<td align=left><p id="USART_Communication_Rx_IT">USART_Communication_Rx_IT</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripherals to receive characters
|
|
from an HyperTerminal (PC) in Asynchronous mode using an interrupt. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_Communication_Rx_IT_Continuous">USART_Communication_Rx_IT_Continuous</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripherals to continuously receive
|
|
characters from an HyperTerminal (PC) in Asynchronous mode using an interrupt. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_Communication_Rx_IT_Init">USART_Communication_Rx_IT_Init</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripherals to receive characters
|
|
from an HyperTerminal (PC) in Asynchronous mode using an interrupt. The peripheral initialization
|
|
uses the LL initialization function to demonstrate LL init.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_Communication_Tx">USART_Communication_Tx</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripherals to send characters
|
|
asynchronously to an HyperTerminal (PC) in Polling mode. If the transfer could not
|
|
be complete within the allocated time, a timeout allows to exit from the sequence
|
|
with timeout error. This example is based on STM32F0xx USART LL API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_Communication_TxRx_DMA">USART_Communication_TxRx_DMA</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripherals
|
|
to send characters asynchronously to/from an HyperTerminal (PC) in DMA mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_Communication_Tx_IT">USART_Communication_Tx_IT</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripheral to send characters
|
|
asynchronously to HyperTerminal (PC) in Interrupt mode. This example is based on the
|
|
STM32F0xx USART LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_HardwareFlowControl">USART_HardwareFlowControl</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripheral
|
|
to receive characters asynchronously from an HyperTerminal (PC) in Interrupt mode
|
|
with the Hardware Flow Control feature enabled. This example is based on STM32F0xx
|
|
USART LL API. The peripheral initialization
|
|
uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_SyncCommunication_FullDuplex_DMA">USART_SyncCommunication_FullDuplex_DMA</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO, USART, DMA and SPI peripherals to transmit
|
|
bytes between a USART and an SPI (in slave mode) in DMA mode. This example is based on the STM32F0xx USART LL API. The peripheral
|
|
initialization uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_SyncCommunication_FullDuplex_IT">USART_SyncCommunication_FullDuplex_IT</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO, USART, DMA and SPI peripherals to transmit
|
|
bytes between a USART and an SPI (in slave mode) in Interrupt mode. This example is based on the STM32F0xx USART LL API
|
|
(the SPI uses the DMA to receive/transmit characters sent from/received by the USART). The peripheral
|
|
initialization uses LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="USART_WakeUpFromStop">USART_WakeUpFromStop</p></td>
|
|
<td align=left>
|
|
Configuration of GPIO and USART peripherals to allow the characters received on USART RX pin to wake up the MCU from low-power mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="UTILS">UTILS</p></td>
|
|
<td align=left><p id="UTILS_ConfigureSystemClock">UTILS_ConfigureSystemClock</p></td>
|
|
<td align=left>
|
|
This example describes how to use UTILS LL API to configure the system clock using PLL with HSI as source
|
|
clock. The user application just needs to calculate PLL parameters using STM32CubeMX and call the UTILS LL
|
|
API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UTILS_ReadDeviceInfo">UTILS_ReadDeviceInfo</p></td>
|
|
<td align=left>
|
|
This example describes how to Read UID, Device ID and Revision ID and save
|
|
them into a global information buffer.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="WWDG">WWDG</p></td>
|
|
<td align=left><p id="WWDG_RefreshUntilUserEvent">WWDG_RefreshUntilUserEvent</p></td>
|
|
<td align=left>
|
|
Configuration of the WWDG to periodically update the counter and
|
|
generate an MCU WWDG reset when a user button is pressed. The peripheral initialization
|
|
uses the LL unitary service functions for optimization purposes (performance and size).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of examples_ll: 74</b></td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>74</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=12><p id="Examples_MIX">Examples_MIX</p></td>
|
|
<td align=left rowspan=1><p id="ADC">ADC</p></td>
|
|
<td align=left><p id="ADC_SingleConversion_TriggerSW_IT">ADC_SingleConversion_TriggerSW_IT</p></td>
|
|
<td align=left>
|
|
How to use the ADC to perform a single ADC channel conversion at each
|
|
software start. This example uses the interrupt programming model (for
|
|
polling and DMA programming models, please refer to other examples). It is
|
|
based on the STM32F0xx ADC HAL and LL API. The LL API is used
|
|
for performance improvement.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="CRC">CRC</p></td>
|
|
<td align=left><p id="CRC_PolynomialUpdate">CRC_PolynomialUpdate</p></td>
|
|
<td align=left>
|
|
How to use the CRC peripheral through the STM32F0xx CRC HAL and LL API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="DMA">DMA</p></td>
|
|
<td align=left><p id="DMA_FLASHToRAM">DMA_FLASHToRAM</p></td>
|
|
<td align=left>
|
|
How to use a DMA to transfer a word data buffer from Flash memory to embedded
|
|
SRAM through the STM32F0xx DMA HAL and LL API. The LL API is used for
|
|
performance improvement.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="I2C">I2C</p></td>
|
|
<td align=left><p id="I2C_OneBoard_ComSlave7_10bits_IT">I2C_OneBoard_ComSlave7_10bits_IT</p></td>
|
|
<td align=left>
|
|
How to perform I2C data buffer transmission/reception between
|
|
one master and two slaves with different Address size (7-bit or 10-bit). This example
|
|
uses the STM32F0xx HAL & LL API (LL API used for performance improvement)
|
|
and an interrupt.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="PWR">PWR</p></td>
|
|
<td align=left><p id="PWR_STANDBY_RTC">PWR_STANDBY_RTC</p></td>
|
|
<td align=left>
|
|
How to enter the Standby mode and wake up from this mode by using an external
|
|
reset or the RTC wakeup timer through the STM32F0xx RTC and RCC HAL,
|
|
and LL API (LL API use for maximizing performance).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="PWR_STOP">PWR_STOP</p></td>
|
|
<td align=left>
|
|
How to enter the system in STOP with Low power regulator mode and wake up from this mode by using external
|
|
reset or wakeup interrupt (all the RCC function calls use RCC LL API
|
|
for minimizing footprint and maximizing performance).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="SPI">SPI</p></td>
|
|
<td align=left><p id="SPI_FullDuplex_ComPolling">SPI_FullDuplex_ComPolling</p></td>
|
|
<td align=left>
|
|
Data buffer transmission/reception between two boards via SPI using Polling mode.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="SPI_HalfDuplex_ComPollingIT">SPI_HalfDuplex_ComPollingIT</p></td>
|
|
<td align=left>
|
|
Data buffer transmission/reception between
|
|
two boards via SPI using Polling (LL driver) and Interrupt modes (HAL driver).
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="TIM">TIM</p></td>
|
|
<td align=left><p id="TIM_6Steps">TIM_6Steps</p></td>
|
|
<td align=left>
|
|
Configuration of the TIM1 peripheral to generate six-step PWM signals.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="UART">UART</p></td>
|
|
<td align=left><p id="UART_HyperTerminal_IT">UART_HyperTerminal_IT</p></td>
|
|
<td align=left>
|
|
Use of a UART to transmit data (transmit/receive)
|
|
between a board and an HyperTerminal PC application in Interrupt mode. This example
|
|
describes how to use the USART peripheral through the STM32F0xx UART HAL
|
|
and LL API, the LL API used for performance improvement.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="UART_HyperTerminal_TxPolling_RxIT">UART_HyperTerminal_TxPolling_RxIT</p></td>
|
|
<td align=left>
|
|
Use of a UART to transmit data (transmit/receive)
|
|
between a board and an HyperTerminal PC application both in Polling and Interrupt
|
|
modes. This example describes how to use the USART peripheral through
|
|
the STM32F0xx UART HAL and LL API, the LL API being used for performance improvement.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of examples_mix: 11</b></td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>11</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
<td>0</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=25><p id="Applications">Applications</p></td>
|
|
<td align=left rowspan=1><p id="EEPROM">EEPROM</p></td>
|
|
<td align=left><p id="EEPROM_Emulation">EEPROM_Emulation</p></td>
|
|
<td align=left>
|
|
This application shows how to emulate EEPROM on internal flash.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="FatFs">FatFs</p></td>
|
|
<td align=left><p id="FatFs_uSD">FatFs_uSD</p></td>
|
|
<td align=left>
|
|
How to use STM32Cube firmware with FatFs middleware component as a generic FAT
|
|
file system module. This application uses Fatfs features to configure a
|
|
microSD drive.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=10><p id="FreeRTOS">FreeRTOS</p></td>
|
|
<td align=left><p id="FreeRTOS_LowPower">FreeRTOS_LowPower</p></td>
|
|
<td align=left>
|
|
How to enter and exit low-power mode with CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_Mail">FreeRTOS_Mail</p></td>
|
|
<td align=left>
|
|
How to use mail queues with CMSIS RTOS API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_Mutexes">FreeRTOS_Mutexes</p></td>
|
|
<td align=left>
|
|
This application shows How to use mutexes with CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_Queues">FreeRTOS_Queues</p></td>
|
|
<td align=left>
|
|
How to use message queues with CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_Semaphore">FreeRTOS_Semaphore</p></td>
|
|
<td align=left>
|
|
How to use semaphores with CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_SemaphoreFromISR">FreeRTOS_SemaphoreFromISR</p></td>
|
|
<td align=left>
|
|
How to use semaphore from ISR with CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_Signal">FreeRTOS_Signal</p></td>
|
|
<td align=left>
|
|
How to perform thread signaling using CMSIS RTOS API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_SignalFromISR">FreeRTOS_SignalFromISR</p></td>
|
|
<td align=left>
|
|
How to perform thread signaling from an interrupt using CMSIS RTOS API.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_ThreadCreation">FreeRTOS_ThreadCreation</p></td>
|
|
<td align=left>
|
|
How to implement thread creation using CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="FreeRTOS_Timers">FreeRTOS_Timers</p></td>
|
|
<td align=left>
|
|
How to use timers of CMSIS RTOS API.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=2><p id="IAP">IAP</p></td>
|
|
<td align=left><p id="IAP_Binary_Template">IAP_Binary_Template</p></td>
|
|
<td align=left>
|
|
This directory contains a set of sources files that build the application to be
|
|
loaded into Flash memory using In-Application Programming (IAP) through USART.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="IAP_Main">IAP_Main</p></td>
|
|
<td align=left>
|
|
This directory contains a set of sources files and pre-configured projects that
|
|
describes how to build an application to be loaded into Flash memory using
|
|
In-Application Programming (IAP) through USART.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=1><p id="STemWin">STemWin</p></td>
|
|
<td align=left><p id="STemWin_HelloWorld">STemWin_HelloWorld</p></td>
|
|
<td align=left>
|
|
Simple "Hello World" example based on STemWin.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=3><p id="TouchSensing">TouchSensing</p></td>
|
|
<td align=left><p id="TouchSensing_2touchkeys">TouchSensing_2touchkeys</p></td>
|
|
<td align=left>
|
|
This firmware is a basic example on how to use the STMTouch driver with 2 touchkey
|
|
sensors. The ECS and DTO are also used.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TouchSensing_Linear">TouchSensing_Linear</p></td>
|
|
<td align=left>
|
|
This firmware is a basic example on how to use the STMTouch driver with 1 linear
|
|
sensor. The ECS and DTO are also used.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="TouchSensing_Linear_IT">TouchSensing_Linear_IT</p></td>
|
|
<td align=left>
|
|
This firmware is a basic example on how to use the STMTouch driver with 1 linear
|
|
sensor. The ECS and DTO are also used.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left rowspan=6><p id="USB_Device">USB_Device</p></td>
|
|
<td align=left><p id="CDC_Standalone">CDC_Standalone</p></td>
|
|
<td align=left>
|
|
Use of the USB device application based on the Device Communication Class (CDC) and
|
|
following the PSTN subprotocol. This application uses the USB Device and UART peripherals.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="CustomHID_Standalone">CustomHID_Standalone</p></td>
|
|
<td align=left>
|
|
Use of the USB device application based on the Custom HID Class.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="DFU_Standalone">DFU_Standalone</p></td>
|
|
<td align=left>
|
|
Compliant implementation of the Device Firmware Upgrade (DFU)
|
|
capability to program the embedded Flash memory through the USB peripheral.
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="HID_BCD_Standalone">HID_BCD_Standalone</p></td>
|
|
<td align=left>
|
|
Use the BCD feature based on the USB HID device application on the STM32F0xx devices.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="HID_Standalone">HID_Standalone</p></td>
|
|
<td align=left>
|
|
Use of the USB device application based on the Human Interface (HID).
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="MSC_Standalone">MSC_Standalone</p></td>
|
|
<td align=left>
|
|
Use of the USB device application based on the Mass Storage Class (MSC).
|
|
</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of applications: 42</b></td>
|
|
<td>14</td>
|
|
<td>6</td>
|
|
<td>0</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>0</td>
|
|
<td>3</td>
|
|
<td>15</td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" rowspan=3><p id="Demonstrations">Demonstrations</p></td>
|
|
<td align=left rowspan=2><p id="-">-</p></td>
|
|
<td align=left><p id="Demo">Demo</p></td>
|
|
<td align=left>
|
|
Demonstration firmware based on STM32Cube. This example helps you to discover
|
|
STM32 Cortex-M devices that are plugged onto your STM32 Nucleo board.
|
|
</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
</tr>
|
|
<tr align=center>
|
|
<td align=left><p id="Gravitech_4Digits_Counter">Gravitech_4Digits_Counter</p></td>
|
|
<td align=left>
|
|
How to use the Gravitech 7 segment 4 digits shield with a Nucleo 32 Board.
|
|
</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
<td><font size="5" color=green>X</font></td>
|
|
<td>-</td>
|
|
<td>-</td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="3"><b>Total number of demonstrations: 9</b></td>
|
|
<td>0</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
</tr>
|
|
<tr style="background-repeat: no-repeat;background-position: right center;background-color: #39A9DC;color: #FFF;" align=center>
|
|
<td colspan="4"><b>Total number of projects: 505</b></td>
|
|
<td>57</td>
|
|
<td>55</td>
|
|
<td>20</td>
|
|
<td>34</td>
|
|
<td>37</td>
|
|
<td>134</td>
|
|
<td>33</td>
|
|
<td>20</td>
|
|
<td>52</td>
|
|
<td>63</td>
|
|
</tr>
|
|
</table>
|
|
</body>
|
|
</html>
|