2019-10-18 15:22:51 +01:00

958 lines
41 KiB
C

/**
******************************************************************************
* @file Examples_LL/ADC/ADC_MultiChannelSingleConversion/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use a ADC peripheral to convert
* several channels, ADC conversions are performed successively
* in a scan sequence.
* This example is based on the STM32F0xx ADC LL API;
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F0xx_LL_Examples
* @{
*/
/** @addtogroup ADC_MultiChannelSingleConversion
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Definitions of ADC hardware constraints delays */
/* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */
/* not timeout values: */
/* Timeout values for ADC operations are dependent to device clock */
/* configuration (system clock versus ADC clock), */
/* and therefore must be defined in user application. */
/* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */
/* values definition. */
/* Timeout values for ADC operations. */
/* (calibration, enable settling time, disable settling time, ...) */
/* Values defined to be higher than worst cases: low clock frequency, */
/* maximum prescalers. */
/* Example of profile very low frequency : ADC clock frequency 0.6MHz */
/* no prescaler, sampling time 239.5 ADC clock cycles, resolution 12 bits. */
/* - ADC calibration time: On STM32F0 ADC, maximum delay is 83/fADC, */
/* resulting in a maximum delay of 139us */
/* (refer to device datasheet, parameter "tCAL") */
/* - ADC enable time: maximum delay is 14/fADC, */
/* resulting in a maximum delay of 24us */
/* (refer to device datasheet, parameter "tSTAB") */
/* - ADC disable time: maximum delay should be a few ADC clock cycles */
/* - ADC stop conversion time: maximum delay should be a few ADC clock */
/* cycles */
/* - ADC conversion time: with this hypothesis of clock settings, maximum */
/* delay will be 420ms. */
/* (refer to device datasheet, parameter "tCONV") */
/* Unit: ms */
#define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1)
#define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1)
#define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1)
#define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1)
#define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 500)
/* Delay between ADC end of calibration and ADC enable. */
/* Delay estimation in CPU cycles: Case of ADC enable done */
/* immediately after ADC calibration, ADC clock setting slow */
/* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */
/* (CPU clock / ADC clock) is above 32. */
#define ADC_DELAY_CALIB_ENABLE_CPU_CYCLES (LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES * 32)
/* Definitions of environment analog values */
/* Value of analog reference voltage (Vref+), connected to analog voltage */
/* supply Vdda (unit: mV). */
#define VDDA_APPLI ((uint32_t)3300)
/* Definitions of data related to this example */
/* Definition of ADCx conversions data table size */
/* Size of array set to ADC sequencer number of ranks converted, */
/* to have a rank in each array address. */
#define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 3)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Variables for ADC conversion data */
__IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data */
/* Variable to report status of DMA transfer of ADC group regular conversions */
/* 0: DMA transfer is not completed */
/* 1: DMA transfer is completed */
/* 2: DMA transfer has not been started yet (initial state) */
__IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
/* Variable to report status of ADC group regular sequence conversions: */
/* 0: ADC group regular sequence conversions are not completed */
/* 1: ADC group regular sequence conversions are completed */
__IO uint8_t ubAdcGrpRegularSequenceConvStatus = 0; /* Variable set into ADC interruption callback */
/* Variable to report number of ADC group regular sequence completed */
static uint32_t ubAdcGrpRegularSequenceConvCount = 0; /* Variable set into ADC interruption callback */
/* Variables for ADC conversion data computation to physical values */
__IO uint16_t uhADCxConvertedData_VoltageGPIO_mVolt = 0; /* Value of voltage on GPIO pin (on which is mapped ADC channel) calculated from ADC conversion data (unit: mV) */
__IO uint16_t uhADCxConvertedData_VrefInt_mVolt = 0; /* Value of internal voltage reference VrefInt calculated from ADC conversion data (unit: mV) */
__IO int16_t hADCxConvertedData_Temperature_DegreeCelsius = 0; /* Value of temperature calculated from ADC conversion data (unit: degree Celcius) */
__IO uint16_t uhADCxConvertedData_VrefAnalog_mVolt = 0; /* Value of analog reference voltage (Vref+), connected to analog voltage supply Vdda, calculated from ADC conversion data (unit: mV) */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Configure_DMA(void);
void Configure_ADC(void);
void Activate_ADC(void);
void LED_Init(void);
void LED_On(void);
void LED_Off(void);
void LED_Blinking(uint32_t Period);
void UserButton_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the system clock to 48 MHz */
SystemClock_Config();
/* Initialize LED2 */
LED_Init();
/* Initialize button in EXTI mode */
UserButton_Init();
/* Configure DMA for data transfer from ADC */
Configure_DMA();
/* Configure ADC */
/* Note: This function configures the ADC but does not enable it. */
/* To enable it, use function "Activate_ADC()". */
/* This is intended to optimize power consumption: */
/* 1. ADC configuration can be done once at the beginning */
/* (ADC disabled, minimal power consumption) */
/* 2. ADC enable (higher power consumption) can be done just before */
/* ADC conversions needed. */
/* Then, possible to perform successive "Activate_ADC()", */
/* "Deactivate_ADC()", ..., without having to set again */
/* ADC configuration. */
Configure_ADC();
/* Activate ADC */
/* Perform ADC activation procedure to make it ready to convert. */
Activate_ADC();
/* Infinite loop */
while (1)
{
/* Note: ADC group regular conversion start is done into push button */
/* IRQ handler, refer to function "UserButton_Callback()". */
/* Note: LED state depending on DMA transfer status is set into DMA */
/* IRQ handler, refer to function "DmaTransferComplete()". */
/* Note: For this example purpose, number of ADC group regular sequences */
/* completed are stored into variable */
/* "ubAdcGrpRegularSequenceConvCount" */
/* (for debug: see variable content into watch window) */
/* Note: ADC conversions data are stored into array "aADCxConvertedData" */
/* (for debug: see variable content into watch window). */
/* Each rank of the sequence is at an address of the array: */
/* - aADCxConvertedData[0]: ADC channel set on rank1 */
/* (ADC1 channel 4) */
/* - aADCxConvertedData[1]: ADC channel set on rank3 */
/* (ADC1 internal channel temperature sensor)*/
/* - aADCxConvertedData[2]: ADC channel set on rank2 */
/* (ADC1 internal channel VrefInt) */
/* Wait for ADC conversion and DMA transfer completion to process data */
while(ubDmaTransferStatus != 1)
{
}
/* Computation of ADC conversions raw data to physical values */
/* using LL ADC driver helper macro. */
uhADCxConvertedData_VoltageGPIO_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[0], LL_ADC_RESOLUTION_12B);
uhADCxConvertedData_VrefInt_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[2], LL_ADC_RESOLUTION_12B);
hADCxConvertedData_Temperature_DegreeCelsius = __LL_ADC_CALC_TEMPERATURE(VDDA_APPLI, aADCxConvertedData[1], LL_ADC_RESOLUTION_12B);
/* Optionally, for this example purpose, calculate analog reference */
/* voltage (Vref+) from ADC conversion of internal voltage reference */
/* VrefInt. */
/* This voltage should correspond to value of literal "VDDA_APPLI". */
/* Note: This calculation can be performed when value of voltage Vref+ */
/* is unknown in the application. */
uhADCxConvertedData_VrefAnalog_mVolt = __LL_ADC_CALC_VREFANALOG_VOLTAGE(aADCxConvertedData[2], LL_ADC_RESOLUTION_12B);
/* Wait for a new ADC conversion and DMA transfer */
while(ubDmaTransferStatus != 0)
{
}
}
}
/**
* @brief This function configures DMA for transfer of data from ADC
* @param None
* @retval None
*/
void Configure_DMA(void)
{
/*## Configuration of NVIC #################################################*/
/* Configure NVIC to enable DMA interruptions */
NVIC_SetPriority(DMA1_Channel1_IRQn, 1); /* DMA IRQ lower priority than ADC IRQ */
NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/*## Configuration of DMA ##################################################*/
/* Enable the peripheral clock of DMA */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);
/* Configure the DMA transfer */
/* - DMA transfer in circular mode to match with ADC configuration: */
/* DMA unlimited requests. */
/* - DMA transfer from ADC without address increment. */
/* - DMA transfer to memory with address increment. */
/* - DMA transfer from ADC by half-word to match with ADC configuration: */
/* ADC resolution 12 bits. */
/* - DMA transfer to memory by half-word to match with ADC conversion data */
/* buffer variable type: half-word. */
LL_DMA_ConfigTransfer(DMA1,
LL_DMA_CHANNEL_1,
LL_DMA_DIRECTION_PERIPH_TO_MEMORY |
LL_DMA_MODE_CIRCULAR |
LL_DMA_PERIPH_NOINCREMENT |
LL_DMA_MEMORY_INCREMENT |
LL_DMA_PDATAALIGN_HALFWORD |
LL_DMA_MDATAALIGN_HALFWORD |
LL_DMA_PRIORITY_HIGH );
/* Set DMA transfer addresses of source and destination */
LL_DMA_ConfigAddresses(DMA1,
LL_DMA_CHANNEL_1,
LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA),
(uint32_t)&aADCxConvertedData,
LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
/* Set DMA transfer size */
LL_DMA_SetDataLength(DMA1,
LL_DMA_CHANNEL_1,
ADC_CONVERTED_DATA_BUFFER_SIZE);
/* Enable DMA transfer interruption: transfer complete */
LL_DMA_EnableIT_TC(DMA1,
LL_DMA_CHANNEL_1);
/* Enable DMA transfer interruption: transfer error */
LL_DMA_EnableIT_TE(DMA1,
LL_DMA_CHANNEL_1);
/*## Activation of DMA #####################################################*/
/* Enable the DMA transfer */
LL_DMA_EnableChannel(DMA1,
LL_DMA_CHANNEL_1);
}
/**
* @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels.
* @note In case re-use of this function outside of this example:
* This function includes checks of ADC hardware constraints before
* executing some configuration functions.
* - In this example, all these checks are not necessary but are
* implemented anyway to show the best practice usages
* corresponding to reference manual procedure.
* (On some STM32 series, setting of ADC features are not
* conditioned to ADC state. However, in order to be compliant with
* other STM32 series and to show the best practice usages,
* ADC state is checked anyway with same constraints).
* Software can be optimized by removing some of these checks,
* if they are not relevant considering previous settings and actions
* in user application.
* - If ADC is not in the appropriate state to modify some parameters,
* the setting of these parameters is bypassed without error
* reporting:
* it can be the expected behavior in case of recall of this
* function to update only a few parameters (which update fullfills
* the ADC state).
* Otherwise, it is up to the user to set the appropriate error
* reporting in user application.
* @note Peripheral configuration is minimal configuration from reset values.
* Thus, some useless LL unitary functions calls below are provided as
* commented examples - setting is default configuration from reset.
* @param None
* @retval None
*/
void Configure_ADC(void)
{
__IO uint32_t wait_loop_index = 0;
/*## Configuration of GPIO used by ADC channels ############################*/
/* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */
/* Enable GPIO Clock */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/* Configure GPIO in analog mode to be used as ADC input */
LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG);
/*## Configuration of NVIC #################################################*/
/* Configure NVIC to enable ADC1 interruptions */
NVIC_SetPriority(ADC1_COMP_IRQn, 0); /* ADC IRQ greater priority than DMA IRQ */
NVIC_EnableIRQ(ADC1_COMP_IRQn);
/*## Configuration of ADC ##################################################*/
/*## Configuration of ADC hierarchical scope: common to several ADC ########*/
/* Enable ADC clock (core clock) */
LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_ADC1);
/* Note: Hardware constraint (refer to description of the functions */
/* below): */
/* On this STM32 serie, setting of these features is conditioned to */
/* ADC state: */
/* All ADC instances of the ADC common group must be disabled. */
/* Note: In this example, all these checks are not necessary but are */
/* implemented anyway to show the best practice usages */
/* corresponding to reference manual procedure. */
/* Software can be optimized by removing some of these checks, if */
/* they are not relevant considering previous settings and actions */
/* in user application. */
if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0)
{
/* Note: Call of the functions below are commented because they are */
/* useless in this example: */
/* setting corresponding to default configuration from reset state. */
/* Set ADC clock (conversion clock) common to several ADC instances */
/* Note: On this STM32 serie, ADC common clock asynchonous prescaler */
/* is applied to each ADC instance if ADC instance clock is */
/* set to clock source asynchronous */
/* (refer to function "LL_ADC_SetClock()" below). */
// LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_CLOCK_ASYNC_DIV1);
/* Set ADC measurement path to internal channels */
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), (LL_ADC_PATH_INTERNAL_VREFINT | LL_ADC_PATH_INTERNAL_TEMPSENSOR));
/* Delay for ADC temperature sensor stabilization time. */
/* Compute number of CPU cycles to wait for, from delay in us. */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles (depends on compilation optimization). */
/* Note: If system core clock frequency is below 200kHz, wait time */
/* is only a few CPU processing cycles. */
/* Note: This delay is implemented here for the purpose in this example. */
/* It can be optimized if merged with other delays */
/* during ADC activation or if other actions are performed */
/* in the meantime. */
wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US * (SystemCoreClock / (100000 * 2))) / 10);
while(wait_loop_index != 0)
{
wait_loop_index--;
}
/*## Configuration of ADC hierarchical scope: multimode ####################*/
/* Note: Feature not available on this STM32 serie */
}
/*## Configuration of ADC hierarchical scope: ADC instance #################*/
/* Note: Hardware constraint (refer to description of the functions */
/* below): */
/* On this STM32 serie, setting of these features is conditioned to */
/* ADC state: */
/* ADC must be disabled. */
if (LL_ADC_IsEnabled(ADC1) == 0)
{
/* Note: Call of the functions below are commented because they are */
/* useless in this example: */
/* setting corresponding to default configuration from reset state. */
/* Set ADC clock (conversion clock) */
LL_ADC_SetClock(ADC1, LL_ADC_CLOCK_SYNC_PCLK_DIV2);
/* Set ADC data resolution */
// LL_ADC_SetResolution(ADC1, LL_ADC_RESOLUTION_12B);
/* Set ADC conversion data alignment */
// LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT);
/* Set ADC low power mode */
// LL_ADC_SetLowPowerMode(ADC1, LL_ADC_LP_MODE_NONE);
/* Set ADC channels sampling time */
/* Note: On this STM32 serie, sampling time is common to all channels */
/* of the entire ADC instance. */
/* Therefore, sampling time is configured here under ADC instance */
/* scope (not under channel scope as on some other STM32 devices */
/* on which sampling time is channel wise). */
/* Note: Considering interruption occurring after each ADC group */
/* regular sequence conversions */
/* (IT from DMA transfer complete), */
/* select sampling time and ADC clock with sufficient */
/* duration to not create an overhead situation in IRQHandler. */
LL_ADC_SetSamplingTimeCommonChannels(ADC1, LL_ADC_SAMPLINGTIME_239CYCLES_5);
}
/*## Configuration of ADC hierarchical scope: ADC group regular ############*/
/* Note: Hardware constraint (refer to description of the functions */
/* below): */
/* On this STM32 serie, setting of these features is conditioned to */
/* ADC state: */
/* ADC must be disabled or enabled without conversion on going */
/* on group regular. */
if ((LL_ADC_IsEnabled(ADC1) == 0) ||
(LL_ADC_REG_IsConversionOngoing(ADC1) == 0) )
{
/* Set ADC group regular trigger source */
LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE);
/* Set ADC group regular trigger polarity */
// LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING);
/* Set ADC group regular continuous mode */
LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE);
/* Set ADC group regular conversion data transfer */
LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_UNLIMITED);
/* Set ADC group regular overrun behavior */
LL_ADC_REG_SetOverrun(ADC1, LL_ADC_REG_OVR_DATA_OVERWRITTEN);
/* Set ADC group regular sequencer */
/* Note: On this STM32 serie, ADC group regular sequencer is */
/* not fully configurable: sequencer length and each rank */
/* affectation to a channel are fixed by channel HW number. */
/* Refer to description of function */
/* "LL_ADC_REG_SetSequencerChannels()". */
/* Case of STM32F0xx: */
/* ADC Channel ADC_CHANNEL_TEMPSENSOR is on ADC channel 16, */
/* there is 1 other channel enabled with lower channel number. */
/* Therefore, ADC_CHANNEL_TEMPSENSOR will be converted by the */
/* sequencer as the 2nd rank. */
/* ADC Channel ADC_CHANNEL_VREFINT is on ADC channel 17, */
/* there are 2 other channels enabled with lower channel number. */
/* Therefore, ADC_CHANNEL_VREFINT will be converted by the */
/* sequencer as the 3rd rank. */
/* Set ADC group regular sequencer discontinuous mode */
// LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE);
/* Set ADC group regular sequence: channel on rank corresponding to */
/* channel number. */
LL_ADC_REG_SetSequencerChannels(ADC1, LL_ADC_CHANNEL_4 | LL_ADC_CHANNEL_VREFINT | LL_ADC_CHANNEL_TEMPSENSOR);
}
/*## Configuration of ADC hierarchical scope: ADC group injected ###########*/
/* Note: Feature not available on this STM32 serie */
/*## Configuration of ADC hierarchical scope: channels #####################*/
/* Note: Hardware constraint (refer to description of the functions */
/* below): */
/* On this STM32 serie, setting of these features is conditioned to */
/* ADC state: */
/* ADC must be disabled or enabled without conversion on going */
/* on either groups regular or injected. */
if ((LL_ADC_IsEnabled(ADC1) == 0) ||
(LL_ADC_REG_IsConversionOngoing(ADC1) == 0) )
{
/* Set ADC channels sampling time */
/* Note: On this STM32 serie, sampling time is common to all channels */
/* of the entire ADC instance. */
/* See sampling time configured above, at ADC instance scope. */
}
/*## Configuration of ADC transversal scope: analog watchdog ###############*/
/* Note: On this STM32 serie, there is only 1 analog watchdog available. */
/* Set ADC analog watchdog: channels to be monitored */
// LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE);
/* Set ADC analog watchdog: thresholds */
// LL_ADC_ConfigAnalogWDThresholds(ADC1, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B), 0x000);
/*## Configuration of ADC transversal scope: oversampling ##################*/
/* Set ADC oversampling scope */
// LL_ADC_SetOverSamplingScope(ADC1, LL_ADC_OVS_DISABLE);
/* Set ADC oversampling parameters */
// LL_ADC_ConfigOverSamplingRatioShift(ADC1, LL_ADC_OVS_RATIO_2, LL_ADC_OVS_SHIFT_NONE);
/*## Configuration of ADC interruptions ####################################*/
/* Enable interruption ADC group regular end of sequence conversions */
LL_ADC_EnableIT_EOS(ADC1);
/* Enable interruption ADC group regular overrun */
LL_ADC_EnableIT_OVR(ADC1);
/* Note: in this example, ADC group regular end of conversions */
/* (number of ADC conversions defined by DMA buffer size) */
/* are notified by DMA transfer interruptions). */
/* ADC interruptions of end of conversion are enabled optionally, */
/* as demonstration purpose in this example. */
}
/**
* @brief Perform ADC activation procedure to make it ready to convert
* (ADC instance: ADC1).
* @note Operations:
* - ADC instance
* - Run ADC self calibration
* - Enable ADC
* - ADC group regular
* none: ADC conversion start-stop to be performed
* after this function
* - ADC group injected
* Feature not available (feature not available on this STM32 serie)
* @param None
* @retval None
*/
void Activate_ADC(void)
{
__IO uint32_t wait_loop_index = 0;
__IO uint32_t backup_setting_adc_dma_transfer = 0;
#if (USE_TIMEOUT == 1)
uint32_t Timeout = 0; /* Variable used for timeout management */
#endif /* USE_TIMEOUT */
/*## Operation on ADC hierarchical scope: ADC instance #####################*/
/* Note: Hardware constraint (refer to description of the functions */
/* below): */
/* On this STM32 serie, setting of these features is conditioned to */
/* ADC state: */
/* ADC must be disabled. */
/* Note: In this example, all these checks are not necessary but are */
/* implemented anyway to show the best practice usages */
/* corresponding to reference manual procedure. */
/* Software can be optimized by removing some of these checks, if */
/* they are not relevant considering previous settings and actions */
/* in user application. */
if (LL_ADC_IsEnabled(ADC1) == 0)
{
/* Disable ADC DMA transfer request during calibration */
/* Note: Specificity of this STM32 serie: Calibration factor is */
/* available in data register and also transfered by DMA. */
/* To not insert ADC calibration factor among ADC conversion data */
/* in array variable, DMA transfer must be disabled during */
/* calibration. */
backup_setting_adc_dma_transfer = LL_ADC_REG_GetDMATransfer(ADC1);
LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_NONE);
/* Run ADC self calibration */
LL_ADC_StartCalibration(ADC1);
/* Poll for ADC effectively calibrated */
#if (USE_TIMEOUT == 1)
Timeout = ADC_CALIBRATION_TIMEOUT_MS;
#endif /* USE_TIMEOUT */
while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0)
{
#if (USE_TIMEOUT == 1)
/* Check Systick counter flag to decrement the time-out value */
if (LL_SYSTICK_IsActiveCounterFlag())
{
if(Timeout-- == 0)
{
/* Time-out occurred. Set LED to blinking mode */
LED_Blinking(LED_BLINK_ERROR);
}
}
#endif /* USE_TIMEOUT */
}
/* Delay between ADC end of calibration and ADC enable. */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles (depends on compilation optimization). */
wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1);
while(wait_loop_index != 0)
{
wait_loop_index--;
}
/* Restore ADC DMA transfer request after calibration */
LL_ADC_REG_SetDMATransfer(ADC1, backup_setting_adc_dma_transfer);
/* Enable ADC */
LL_ADC_Enable(ADC1);
/* Poll for ADC ready to convert */
#if (USE_TIMEOUT == 1)
Timeout = ADC_ENABLE_TIMEOUT_MS;
#endif /* USE_TIMEOUT */
while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0)
{
#if (USE_TIMEOUT == 1)
/* Check Systick counter flag to decrement the time-out value */
if (LL_SYSTICK_IsActiveCounterFlag())
{
if(Timeout-- == 0)
{
/* Time-out occurred. Set LED to blinking mode */
LED_Blinking(LED_BLINK_ERROR);
}
}
#endif /* USE_TIMEOUT */
}
/* Note: ADC flag ADRDY is not cleared here to be able to check ADC */
/* status afterwards. */
/* This flag should be cleared at ADC Deactivation, before a new */
/* ADC activation, using function "LL_ADC_ClearFlag_ADRDY()". */
}
/*## Operation on ADC hierarchical scope: ADC group regular ################*/
/* Note: No operation on ADC group regular performed here. */
/* ADC group regular conversions to be performed after this function */
/* using function: */
/* "LL_ADC_REG_StartConversion();" */
/*## Operation on ADC hierarchical scope: ADC group injected ###############*/
/* Note: Feature not available on this STM32 serie */
}
/**
* @brief Initialize LED2.
* @param None
* @retval None
*/
void LED_Init(void)
{
/* Enable the LED2 Clock */
LED2_GPIO_CLK_ENABLE();
/* Configure IO in output push-pull mode to drive external LED2 */
LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT);
/* Reset value is LL_GPIO_OUTPUT_PUSHPULL */
//LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL);
/* Reset value is LL_GPIO_SPEED_FREQ_LOW */
//LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW);
/* Reset value is LL_GPIO_PULL_NO */
//LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO);
}
/**
* @brief Turn-on LED2.
* @param None
* @retval None
*/
void LED_On(void)
{
/* Turn LED2 on */
LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN);
}
/**
* @brief Turn-off LED2.
* @param None
* @retval None
*/
void LED_Off(void)
{
/* Turn LED2 off */
LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN);
}
/**
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
void LED_Blinking(uint32_t Period)
{
/* Turn LED2 on */
LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN);
/* Toggle IO in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
LL_mDelay(Period);
}
}
/**
* @brief Configures User push-button in EXTI Line Mode.
* @param None
* @retval None
*/
void UserButton_Init(void)
{
/* Enable the BUTTON Clock */
USER_BUTTON_GPIO_CLK_ENABLE();
/* Configure GPIO for BUTTON */
LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_NO);
/* if(Button_Mode == BUTTON_MODE_EXTI) */
{
/* Connect External Line to the GPIO */
USER_BUTTON_SYSCFG_SET_EXTI();
/* Enable a rising trigger EXTI line 13 Interrupt */
USER_BUTTON_EXTI_LINE_ENABLE();
USER_BUTTON_EXTI_FALLING_TRIG_ENABLE();
/* Configure NVIC for USER_BUTTON_EXTI_IRQn */
NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn);
NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI48)
* SYSCLK(Hz) = 48000000
* HCLK(Hz) = 48000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* HSI Frequency(Hz) = 48000000
* PREDIV = 2
* PLLMUL = 2
* Flash Latency(WS) = 1
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
/* Set FLASH latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_1);
/* Enable HSI48 and wait for activation*/
LL_RCC_HSI48_Enable();
while(LL_RCC_HSI48_IsReady() != 1)
{
};
/* Main PLL configuration and activation */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI48, LL_RCC_PLL_MUL_2, LL_RCC_PREDIV_DIV_2);
LL_RCC_PLL_Enable();
while(LL_RCC_PLL_IsReady() != 1)
{
};
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
};
/* Set APB1 prescaler */
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
/* Set systick to 1ms in using frequency set to 48MHz */
/* This frequency can be calculated through LL RCC macro */
/* ex: __LL_RCC_CALC_PLLCLK_FREQ (HSI48_VALUE, LL_RCC_PLL_MUL_2, LL_RCC_PREDIV_DIV_2) */
LL_Init1msTick(48000000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
LL_SetSystemCoreClock(48000000);
}
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief Function to manage IRQ Handler
* @param None
* @retval None
*/
void UserButton_Callback(void)
{
/* Turn LED off before performing a new ADC conversion start */
/* (conversion of ranks set in ADC group regular sequencer). */
LED_Off();
/* Reset status variable of DMA transfer before performing a new ADC */
/* conversion start of a sequence (in case of previous DMA transfer */
/* completed). */
/* Note: Optionally, for this example purpose, check DMA transfer */
/* status before starting another ADC conversion. */
if (ubDmaTransferStatus != 0)
{
ubDmaTransferStatus = 0;
}
else
{
/* Error: Previous action (ADC conversion or DMA transfer) not yet */
/* completed. */
LED_Blinking(LED_BLINK_ERROR);
}
/* Start ADC group regular conversion */
/* Note: Hardware constraint (refer to description of the function */
/* below): */
/* On this STM32 serie, setting of this feature is conditioned to */
/* ADC state: */
/* ADC must be enabled without conversion on going on group regular, */
/* without ADC disable command on going. */
/* Note: In this example, all these checks are not necessary but are */
/* implemented anyway to show the best practice usages */
/* corresponding to reference manual procedure. */
/* Software can be optimized by removing some of these checks, if */
/* they are not relevant considering previous settings and actions */
/* in user application. */
if ((LL_ADC_IsEnabled(ADC1) == 1) &&
(LL_ADC_IsDisableOngoing(ADC1) == 0) &&
(LL_ADC_REG_IsConversionOngoing(ADC1) == 0) )
{
LL_ADC_REG_StartConversion(ADC1);
}
else
{
/* Error: ADC conversion start could not be performed */
LED_Blinking(LED_BLINK_ERROR);
}
}
/**
* @brief DMA transfer complete callback
* @note This function is executed when the transfer complete interrupt
* is generated
* @retval None
*/
void AdcDmaTransferComplete_Callback()
{
/* Update status variable of DMA transfer */
ubDmaTransferStatus = 1;
/* Set LED depending on DMA transfer status */
/* - Turn-on if DMA transfer is completed */
/* - Turn-off if DMA transfer is not completed */
LED_On();
/* For this example purpose, check that DMA transfer status is matching */
/* ADC group regular sequence status: */
if (ubAdcGrpRegularSequenceConvStatus != 1)
{
AdcDmaTransferError_Callback();
}
/* Reset status variable of ADC group regular sequence */
ubAdcGrpRegularSequenceConvStatus = 0;
}
/**
* @brief DMA transfer error callback
* @note This function is executed when the transfer error interrupt
* is generated during DMA transfer
* @retval None
*/
void AdcDmaTransferError_Callback()
{
/* Error detected during DMA transfer */
LED_Blinking(LED_BLINK_ERROR);
}
/**
* @brief ADC group regular end of sequence conversions interruption callback
* @note This function is executed when the ADC group regular
* sequencer has converted all ranks of the sequence.
* @retval None
*/
void AdcGrpRegularSequenceConvComplete_Callback()
{
/* Update status variable of ADC group regular sequence */
ubAdcGrpRegularSequenceConvStatus = 1;
ubAdcGrpRegularSequenceConvCount++;
}
/**
* @brief ADC group regular overrun interruption callback
* @note This function is executed when ADC group regular
* overrun error occurs.
* @retval None
*/
void AdcGrpRegularOverrunError_Callback(void)
{
/* Note: Disable ADC interruption that caused this error before entering in */
/* infinite loop below. */
/* Disable ADC group regular overrun interruption */
LL_ADC_DisableIT_OVR(ADC1);
/* Error from ADC */
LED_Blinking(LED_BLINK_ERROR);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/