houssine BOUGUERBA a58188598c Release v1.11.4
2023-03-15 11:49:59 +01:00

793 lines
18 KiB
C

/**
******************************************************************************
* @file Demonstrations/Src/main.c
* @author MCD Application Team
* @brief Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F0xx_HAL_Demonstrations
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
#define ABS(x) (x < 0) ? (-x) : x
/* Private variables ---------------------------------------------------------*/
__IO uint32_t ButtonPressed = 0;
extern __IO uint32_t Gv_EOA;
USBD_HandleTypeDef USBD_Device;
TSC_HandleTypeDef TscHandle;
TSC_IOConfigTypeDef IoConfig;
/* Private function prototypes -----------------------------------------------*/
static void Demo(void);
static void LED_Test(void);
static void MEMS_Test(void);
static void USB_Demo(void);
static void USB_Test(void);
static void USB_GetPointerData_Test(uint8_t *pbuf);
static void USB_GetPointerData_Demo(uint8_t *pbuf);
static void Demo_GyroReadAngRate(float *pfData);
static void TSL_Test(void);
static void ProcessSensors(void);
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F0xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Low Level Initialization
*/
HAL_Init();
/* Initialize LEDs, User_Button on STM32F052B-Discovery board ***********/
BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
BSP_LED_Init(LED3);
BSP_LED_Init(LED4);
BSP_LED_Init(LED5);
BSP_LED_Init(LED6);
/* Configure the system clock to have a system clock = 48 Mhz */
SystemClock_Config();
/* Init USB Device Library */
USBD_Init(&USBD_Device, &HID_Desc, 0);
/* Register the USB HID class */
USBD_RegisterClass(&USBD_Device, &USBD_HID);
/* Start Device Process */
USBD_Start(&USBD_Device);
/* Delay 1s to select Test Program or to go directly through the demo*/
HAL_Delay(1000);
if (BSP_PB_GetState(BUTTON_USER) == GPIO_PIN_SET)
{
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* Set ButtonPressed at 0 value */
ButtonPressed = 0;
/* LED test : Blinking LEDs */
LED_Test();
/* Wait for User button to be pressed to switch to USB Test
the cursor move in square path and led On corresponding to such direction */
USB_Test();
/* Move Discovery board to execute MEMS Test, Mems detect the angular rate
and led On corresponding to such direction*/
MEMS_Test();
/* Wait for User button to be pressed to switch to Touch Sensor Test
each bank pointed correspond to specific Leds On, test can performed
in both direction */
TSL_Test();
}
else
{
Demo();
}
/* Infinite loop */
while (1)
{
Demo();
}
}
/**
* @brief Demo.
* @param None
* @retval None
*/
static void Demo(void)
{
/* Blinking LEDs & Wait for User button to be pressed to switch to MEMES demo */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
/* Toggle LED3, LED4, LED5 & LED6 */
BSP_LED_Toggle(LED3);
BSP_LED_Toggle(LED4);
BSP_LED_Toggle(LED5);
BSP_LED_Toggle(LED6);
/* Insert 100ms delay */
HAL_Delay(100);
}
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* Turn Off Leds */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
/* Move Discovery board to execute MEMS demo, Mems detect the angular rate
and led On corresponding to such direction*/
MEMS_Test();
/* Wait for User button to be pressed to switch to USB demo
Mouse cursor moving corresponding to board move direction */
USB_Demo();
/* Wait for User button to be pressed to switch to Touch Sensor Test
each bank pointed correspond to specific Leds On, test can performed
in both direction */
TSL_Test();
}
/**
* @brief LED Test.
* @param None
* @retval None
*/
static void LED_Test(void)
{
while (ButtonPressed != 1)
{
/* Toggle LED3 */
BSP_LED_Toggle(LED3);
/* Insert 50ms delay */
HAL_Delay(50);
/* Toggle LED5 */
BSP_LED_Toggle(LED5);
/* Insert 50ms delay */
HAL_Delay(50);
if (ButtonPressed == 1)
{
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
}
else
{
/* Toggle LED6 */
BSP_LED_Toggle(LED6);
/* Insert 50ms delay */
HAL_Delay(50);
/* Toggle LED4 */
BSP_LED_Toggle(LED4);
/* Insert 50ms delay */
HAL_Delay(50);
}
}
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* Turn Off Leds */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
}
/**
* @brief MEMS Test.
* @param None
* @retval None
*/
static void MEMS_Test(void)
{
float Buffer[6] = {0};
uint8_t Xval, Yval = 0;
/* Demo Gyroscope */
if (BSP_GYRO_Init() != GYRO_OK)
{
Error_Handler();
}
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
/* Read Gyro Angular data */
BSP_GYRO_GetXYZ(Buffer);
/* Update autoreload and capture compare registers value */
Xval = ABS((int8_t)(Buffer[0]));
Yval = ABS((int8_t)(Buffer[1]));
if (Xval > Yval)
{
if (Buffer[0] > 5000.0f)
{
/* LED5 On */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_On(LED5);
BSP_LED_Off(LED6);
/* Insert 250ms delay */
HAL_Delay(250);
}
if (Buffer[0] < -5000.0f)
{
/* LED4 On */
BSP_LED_Off(LED3);
BSP_LED_On(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
/* Insert 250ms delay */
HAL_Delay(250);
}
}
else
{
if (Buffer[1] > 5000.0f)
{
/* LED3 On */
BSP_LED_On(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
/* Insert 250ms delay */
HAL_Delay(250);
}
if (Buffer[1] < -5000.0f)
{
/* LED6 On */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_On(LED6);
/* Insert 250ms delay */
HAL_Delay(250);
}
}
}
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* Turn Off Leds */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
}
/**
* @brief USB Mouse cursor moving
* @param None
* @retval None
*/
static void USB_Demo(void)
{
uint8_t HID_Buffer[4];
BSP_LED_On(LED3);
BSP_LED_Off(LED6);
while ((BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET))
{
USB_GetPointerData_Demo(HID_Buffer);
/* send data though IN endpoint*/
if ((HID_Buffer[1] != 0) || (HID_Buffer[2] != 0))
{
USBD_HID_SendReport(&USBD_Device, HID_Buffer, 4);
}
}
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{}
/* Turn Off Leds */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
}
/**
* @brief Calculate the angular Data rate Gyroscope.
* @param pfData : Data out pointer
* @retval None
*/
static void Demo_GyroReadAngRate(float *pfData)
{
uint8_t tmpbuffer[6] = {0};
int16_t RawData[3] = {0};
uint8_t tmpreg = 0;
float sensitivity = 0;
int i = 0;
if ((L3gd20Drv.ReadID() == I_AM_L3GD20) || (L3gd20Drv.ReadID() == I_AM_L3GD20_TR))
{
GYRO_IO_Read(&tmpreg, L3GD20_CTRL_REG4_ADDR, 1);
GYRO_IO_Read(tmpbuffer, L3GD20_OUT_X_L_ADDR, 6);
/* check in the control register 4 the data alignment (Big Endian or Little Endian)*/
if (!(tmpreg & L3GD20_BLE_MSB))
{
for (i = 0; i < 3; i++)
{
RawData[i] = (int16_t)(((uint16_t)tmpbuffer[2 * i + 1] << 8) + tmpbuffer[2 * i]);
}
}
else
{
for (i = 0; i < 3; i++)
{
RawData[i] = (int16_t)(((uint16_t)tmpbuffer[2 * i] << 8) + tmpbuffer[2 * i + 1]);
}
}
/* Switch the sensitivity value set in the CRTL4 */
switch (tmpreg & L3GD20_FULLSCALE_SELECTION)
{
case L3GD20_FULLSCALE_250:
sensitivity = L3GD20_SENSITIVITY_250DPS;
break;
case L3GD20_FULLSCALE_500:
sensitivity = L3GD20_SENSITIVITY_500DPS;
break;
case L3GD20_FULLSCALE_2000:
sensitivity = L3GD20_SENSITIVITY_2000DPS;
break;
default:
sensitivity = L3GD20_SENSITIVITY_250DPS;
}
}
else
{
GYRO_IO_Read(&tmpreg, I3G4250D_CTRL_REG4_ADDR, 1);
GYRO_IO_Read(tmpbuffer, I3G4250D_OUT_X_L_ADDR, 6);
/* check in the control register 4 the data alignment (Big Endian or Little Endian)*/
if (!(tmpreg & I3G4250D_BLE_MSB))
{
for (i = 0; i < 3; i++)
{
RawData[i] = (int16_t)(((uint16_t)tmpbuffer[2 * i + 1] << 8) + tmpbuffer[2 * i]);
}
}
else
{
for (i = 0; i < 3; i++)
{
RawData[i] = (int16_t)(((uint16_t)tmpbuffer[2 * i] << 8) + tmpbuffer[2 * i + 1]);
}
}
/* Switch the sensitivity value set in the CRTL4 */
switch (tmpreg & I3G4250D_FULLSCALE_SELECTION)
{
case I3G4250D_FULLSCALE_245:
sensitivity = I3G4250D_SENSITIVITY_245DPS;
break;
case I3G4250D_FULLSCALE_500:
sensitivity = I3G4250D_SENSITIVITY_500DPS;
break;
case I3G4250D_FULLSCALE_2000:
sensitivity = I3G4250D_SENSITIVITY_2000DPS;
break;
default:
sensitivity = I3G4250D_SENSITIVITY_245DPS;
}
}
/* divide by sensitivity */
for (i = 0; i < 3; i++)
{
pfData[i] = (float)(RawData[i] / sensitivity);
}
}
/**
* @brief USB Test : Configure the USB
* @param None
* @retval None
*/
static void USB_Test(void)
{
uint8_t HID_Buffer[4];
while ((BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET))
{
USB_GetPointerData_Test(HID_Buffer);
/* send data though IN endpoint*/
if ((HID_Buffer[1] != 0) || (HID_Buffer[2] != 0))
{
USBD_HID_SendReport(&USBD_Device, HID_Buffer, 4);
HAL_Delay(50);
}
}
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{}
/* Turn Off Leds */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
}
/**
* @brief USBD_HID_GetPos
* @param None
* @retval Pointer to report
*/
static void USB_GetPointerData_Test(uint8_t *pbuf)
{
static int8_t x = 0;
static int8_t y = 0;
static int8_t Sens = 0;
static int8_t Pas = 0;
if (Pas == 20)
{
Pas = 0;
Sens++;
}
if (Sens == 0)
{
x = Pas++;
y = 0;
BSP_LED_Toggle(LED5);
}
if (Sens == 1)
{
y = Pas++;
x = 0;
BSP_LED_Toggle(LED6);
}
if (Sens == 2)
{
x = 256 - Pas++;
y = 0;
BSP_LED_Toggle(LED4);
}
if (Sens == 3)
{
y = 256 - Pas++;
x = 0;
BSP_LED_Toggle(LED3);
}
if (Sens == 4)
{
Sens = 0;
x = 0;
y = 0;
}
pbuf[0] = 0;
pbuf[1] = x;
pbuf[2] = y;
pbuf[3] = 0;
}
/**
* @brief USBD_HID_GetPos
* @param None
* @retval Pointer to report
*/
static void USB_GetPointerData_Demo(uint8_t *pbuf)
{
static float Buffer[6] = {0};
BSP_GYRO_Init();
/* Read Gyro Angular data */
Demo_GyroReadAngRate(Buffer);
pbuf[0] = 0;
pbuf[1] = -(int8_t)(Buffer[2]) / 15;
pbuf[2] = (int8_t)(Buffer[1]) / 15;
pbuf[3] = 0;
BSP_LED_Toggle(LED3);
BSP_LED_Toggle(LED6);
}
/**
* @brief TS Test.
* @param None
* @retval None
*/
static void TSL_Test(void)
{
/* Configure the TSC peripheral */
TscHandle.Instance = TSCx;
if (HAL_TSC_DeInit(&TscHandle) != HAL_OK)
{
Error_Handler();
}
TscHandle.Init.AcquisitionMode = TSC_ACQ_MODE_NORMAL;
TscHandle.Init.CTPulseHighLength = TSC_CTPH_2CYCLES;
TscHandle.Init.CTPulseLowLength = TSC_CTPL_2CYCLES;
TscHandle.Init.IODefaultMode = /*TSC_IODEF_IN_FLOAT*/TSC_IODEF_OUT_PP_LOW;
TscHandle.Init.MaxCountInterrupt = DISABLE;
TscHandle.Init.MaxCountValue = TSC_MCV_8191;
TscHandle.Init.PulseGeneratorPrescaler = TSC_PG_PRESC_DIV64;
TscHandle.Init.SpreadSpectrum = DISABLE;
TscHandle.Init.SpreadSpectrumDeviation = 127;
TscHandle.Init.SpreadSpectrumPrescaler = TSC_SS_PRESC_DIV1;
TscHandle.Init.SynchroPinPolarity = TSC_SYNC_POLARITY_FALLING;
/* All channel, shield and sampling IOs must be declared below */
TscHandle.Init.ChannelIOs = (TSC_GROUP1_IO3 | TSC_GROUP2_IO3 | TSC_GROUP3_IO2);
TscHandle.Init.SamplingIOs = (TSC_GROUP1_IO4 | TSC_GROUP2_IO4 | TSC_GROUP3_IO3);
TscHandle.Init.ShieldIOs = 0;
if (HAL_TSC_Init(&TscHandle) != HAL_OK)
{
Error_Handler();
}
/* Init STMTouch driver */
TSL_user_Init();
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
/* Execute STMTouch Driver state machine */
if (TSL_user_Action() == TSL_STATUS_OK)
{
ProcessSensors(); // Execute sensors related tasks
}
}
/* Wait for User button is released */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* Turn Off Leds */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
}
/**
* @brief Manage the activity on sensors when touched/released (example)
* @param None
* @retval None
*/
static void ProcessSensors(void)
{
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
BSP_LED_Off(LED5);
BSP_LED_Off(LED6);
if ((MyLinRots[0].p_Data->StateId == TSL_STATEID_DETECT) ||
(MyLinRots[0].p_Data->StateId == TSL_STATEID_DEB_RELEASE_DETECT))
{
if (MyLinRots[0].p_Data->Position > 0)
{
BSP_LED_On(LED6);
}
if (MyLinRots[0].p_Data->Position >= 48)
{
BSP_LED_On(LED5);
}
if (MyLinRots[0].p_Data->Position >= 80)
{
BSP_LED_On(LED3);
}
if (MyLinRots[0].p_Data->Position >= 112)
{
BSP_LED_On(LED4);
}
}
}
/**
* @brief EXTI line detection callbacks.
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == USER_BUTTON_PIN)
{
ButtonPressed = 0x01;
}
}
/**
* @brief Acquisition completed callback in non blocking mode
* @param htsc: pointer to a TSC_HandleTypeDef structure that contains
* the configuration information for the specified TSC.
* @retval None
*/
void HAL_TSC_ConvCpltCallback(TSC_HandleTypeDef *htsc)
{
#if TSLPRM_TSC_IODEF > 0 // Default = Input Floating
/* Set IO default in Output PP Low to discharge all capacitors */
HAL_TSC_IODischarge(htsc, ENABLE);
#endif
Gv_EOA = 1; /* To inform the main loop routine of the End Of Acquisition */
}
/**
* @brief Error callback in non blocking mode
* @param htsc: pointer to a TSC_HandleTypeDef structure that contains
* the configuration information for the specified TSC.
* @retval None
*/
void HAL_TSC_ErrorCallback(TSC_HandleTypeDef *htsc)
{
Error_Handler();
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI48)
* SYSCLK(Hz) = 48000000
* HCLK(Hz) = 48000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* HSI Frequency(Hz) = 48000000
* PREDIV = 2
* PLLMUL = 2
* Flash Latency(WS) = 1
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Select HSI48 Oscillator as PLL source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI48;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK and PCLK1 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* User may add here some code to deal with this error */
while (1)
{
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/