2019-07-08 12:45:16 +01:00
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ file I2C / I2C_TwoBoards_ComDMA / Src / main . c
* @ author MCD Application Team
* @ brief This sample code shows how to use STM32F0xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* DMA transfer .
* The communication is done using 2 Boards .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ attention
*
2023-03-14 16:54:20 +01:00
* Copyright ( c ) 2016 STMicroelectronics .
* All rights reserved .
2019-07-08 12:45:16 +01:00
*
2023-03-14 16:54:20 +01:00
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component .
* If no LICENSE file comes with this software , it is provided AS - IS .
2019-07-08 12:45:16 +01:00
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*/
/* Includes ------------------------------------------------------------------*/
# include "main.h"
/** @addtogroup STM32F0xx_HAL_Examples
* @ {
*/
/** @addtogroup I2C_TwoBoards_ComDMA
* @ {
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
//#define MASTER_BOARD
# define I2C_ADDRESS 0x30F
/* I2C TIMING Register define when I2C clock source is SYSCLK */
/* I2C TIMING is calculated in case of the I2C Clock source is the SYSCLK = 48 MHz */
/* This example use TIMING to 0x00A51314 to reach 1 MHz speed (Rise time = 100 ns, Fall time = 100 ns) */
# define I2C_TIMING 0x00A51314
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
/* I2C handler declared in "stm32f072b_discovery.c" file */
extern I2C_HandleTypeDef I2cHandle ;
/* Buffer used for transmission */
uint8_t aTxBuffer [ ] = " ****I2C_TwoBoards communication based on DMA**** ****I2C_TwoBoards communication based on DMA**** ****I2C_TwoBoards communication based on DMA**** " ;
/* Buffer used for reception */
uint8_t aRxBuffer [ RXBUFFERSIZE ] ;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config ( void ) ;
static uint16_t Buffercmp ( uint8_t * pBuffer1 , uint8_t * pBuffer2 , uint16_t BufferLength ) ;
static void Error_Handler ( void ) ;
/* Private functions ---------------------------------------------------------*/
/**
* @ brief Main program
* @ param None
* @ retval None
*/
int main ( void )
{
/* STM32F0xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base , but user
can eventually implement his proper time base source ( a general purpose
timer for example or other time source ) , keeping in mind that Time base
duration should be kept 1 ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis .
- Low Level Initialization
*/
HAL_Init ( ) ;
/* Configure the system clock to 48 MHz */
SystemClock_Config ( ) ;
/* Configure LED_GREEN and LED_RED */
BSP_LED_Init ( LED_GREEN ) ;
BSP_LED_Init ( LED_RED ) ;
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle . Instance = I2Cx ;
I2cHandle . Init . Timing = I2C_TIMING ;
I2cHandle . Init . AddressingMode = I2C_ADDRESSINGMODE_10BIT ;
I2cHandle . Init . DualAddressMode = I2C_DUALADDRESS_DISABLE ;
I2cHandle . Init . GeneralCallMode = I2C_GENERALCALL_DISABLE ;
I2cHandle . Init . NoStretchMode = I2C_NOSTRETCH_DISABLE ;
I2cHandle . Init . OwnAddress1 = I2C_ADDRESS ;
I2cHandle . Init . OwnAddress2 = 0xFF ;
if ( HAL_I2C_Init ( & I2cHandle ) ! = HAL_OK )
{
/* Initialization Error */
Error_Handler ( ) ;
}
/* Enable the Analog I2C Filter */
HAL_I2CEx_ConfigAnalogFilter ( & I2cHandle , I2C_ANALOGFILTER_ENABLE ) ;
# ifdef MASTER_BOARD
/* Configure User push-button */
BSP_PB_Init ( BUTTON_USER , BUTTON_MODE_GPIO ) ;
/* Wait for User push-button press before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_RESET )
{
}
/* Delay to avoid that possible signal rebound is taken as button release */
HAL_Delay ( 50 ) ;
/* Wait for User push-button release before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_SET )
{
}
/* The board sends the message and expects to receive it back */
/*##-2- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
" aTxBuffer " buffer */
do
{
if ( HAL_I2C_Master_Transmit_DMA ( & I2cHandle , ( uint16_t ) I2C_ADDRESS , ( uint8_t * ) aTxBuffer , TXBUFFERSIZE ) ! = HAL_OK )
{
/* Error_Handler() function is called when error occurs. */
Error_Handler ( ) ;
}
/*##-3- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while ( HAL_I2C_GetError ( & I2cHandle ) = = HAL_I2C_ERROR_AF ) ;
/* Wait for User push-button press before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_RESET )
{
}
/* Delay to avoid that possible signal rebound is taken as button release */
HAL_Delay ( 50 ) ;
/* Wait for User push-button release before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_SET )
{
}
/*##-4- Put I2C peripheral in reception process ###########################*/
do
{
if ( HAL_I2C_Master_Receive_DMA ( & I2cHandle , ( uint16_t ) I2C_ADDRESS , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) ! = HAL_OK )
{
/* Error_Handler() function is called when error occurs. */
Error_Handler ( ) ;
}
/*##-5- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while ( HAL_I2C_GetError ( & I2cHandle ) = = HAL_I2C_ERROR_AF ) ;
# else
/* The board receives the message and sends it back */
/*##-2- Put I2C peripheral in reception process ###########################*/
if ( HAL_I2C_Slave_Receive_DMA ( & I2cHandle , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) ! = HAL_OK )
{
/* Transfer error in reception process */
Error_Handler ( ) ;
}
/*##-3- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/*##-4- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
" aTxBuffer " buffer */
if ( HAL_I2C_Slave_Transmit_DMA ( & I2cHandle , ( uint8_t * ) aTxBuffer , TXBUFFERSIZE ) ! = HAL_OK )
{
/* Transfer error in transmission process */
Error_Handler ( ) ;
}
# endif /* MASTER_BOARD */
/*##-5- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/*##-6- Compare the sent and received buffers ##############################*/
if ( Buffercmp ( ( uint8_t * ) aTxBuffer , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) )
{
/* Processing Error */
Error_Handler ( ) ;
}
/* Infinite loop */
while ( 1 )
{
}
}
/**
* @ brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL ( HSI48 )
* SYSCLK ( Hz ) = 48000000
* HCLK ( Hz ) = 48000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* HSI Frequency ( Hz ) = 48000000
* PREDIV = 2
* PLLMUL = 2
* Flash Latency ( WS ) = 1
* @ param None
* @ retval None
*/
void SystemClock_Config ( void )
{
RCC_ClkInitTypeDef RCC_ClkInitStruct ;
RCC_OscInitTypeDef RCC_OscInitStruct ;
/* Select HSI48 Oscillator as PLL source */
RCC_OscInitStruct . OscillatorType = RCC_OSCILLATORTYPE_HSI48 ;
RCC_OscInitStruct . HSI48State = RCC_HSI48_ON ;
RCC_OscInitStruct . PLL . PLLState = RCC_PLL_ON ;
RCC_OscInitStruct . PLL . PLLSource = RCC_PLLSOURCE_HSI48 ;
RCC_OscInitStruct . PLL . PREDIV = RCC_PREDIV_DIV2 ;
RCC_OscInitStruct . PLL . PLLMUL = RCC_PLL_MUL2 ;
if ( HAL_RCC_OscConfig ( & RCC_OscInitStruct ) ! = HAL_OK )
{
/* Initialization Error */
while ( 1 ) ;
}
/* Select PLL as system clock source and configure the HCLK and PCLK1 clocks dividers */
RCC_ClkInitStruct . ClockType = ( RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 ) ;
RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK ;
RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV1 ;
if ( HAL_RCC_ClockConfig ( & RCC_ClkInitStruct , FLASH_LATENCY_1 ) ! = HAL_OK )
{
/* Initialization Error */
while ( 1 ) ;
}
}
/**
* @ brief Tx Transfer completed callback .
* @ param I2cHandle : I2C handle .
* @ note This example shows a simple way to report end of DMA Tx transfer , and
* you can add your own implementation .
* @ retval None
*/
# ifdef MASTER_BOARD
void HAL_I2C_MasterTxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED_GREEN: Transfer in transmission process is correct */
BSP_LED_Toggle ( LED_GREEN ) ;
}
# else
void HAL_I2C_SlaveTxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED_GREEN: Transfer in transmission process is correct */
BSP_LED_Toggle ( LED_GREEN ) ;
}
# endif /* MASTER_BOARD */
/**
* @ brief Rx Transfer completed callback .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report end of DMA Rx transfer , and
* you can add your own implementation .
* @ retval None
*/
# ifdef MASTER_BOARD
void HAL_I2C_MasterRxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED_GREEN: Transfer in reception process is correct */
BSP_LED_Toggle ( LED_GREEN ) ;
}
# else
void HAL_I2C_SlaveRxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED_GREEN: Transfer in reception process is correct */
BSP_LED_Toggle ( LED_GREEN ) ;
}
# endif /* MASTER_BOARD */
/**
* @ brief I2C error callbacks .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report transfer error , and you can
* add your own implementation .
* @ retval None
*/
void HAL_I2C_ErrorCallback ( I2C_HandleTypeDef * I2cHandle )
{
/** Error_Handler() function is called when error occurs.
* 1 - When Slave don ' t acknowledge it ' s address , Master restarts communication .
* 2 - When Master don ' t acknowledge the last data transferred , Slave don ' t care in this example .
*/
if ( HAL_I2C_GetError ( I2cHandle ) ! = HAL_I2C_ERROR_AF )
{
/* Turn Off LED_GREEN */
BSP_LED_Off ( LED_GREEN ) ;
/* Turn On LED_RED */
BSP_LED_On ( LED_RED ) ;
}
}
/**
* @ brief This function is executed in case of error occurrence .
* @ param None
* @ retval None
*/
static void Error_Handler ( void )
{
/* Turn LED_GREEN off */
BSP_LED_Off ( LED_GREEN ) ;
/* Turn LED_RED on */
BSP_LED_On ( LED_RED ) ;
while ( 1 )
{
}
}
/**
* @ brief Compares two buffers .
* @ param pBuffer1 , pBuffer2 : buffers to be compared .
* @ param BufferLength : buffer ' s length
* @ retval 0 : pBuffer1 identical to pBuffer2
* > 0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp ( uint8_t * pBuffer1 , uint8_t * pBuffer2 , uint16_t BufferLength )
{
while ( BufferLength - - )
{
if ( ( * pBuffer1 ) ! = * pBuffer2 )
{
return BufferLength ;
}
pBuffer1 + + ;
pBuffer2 + + ;
}
return 0 ;
}
# ifdef USE_FULL_ASSERT
/**
* @ brief Reports the name of the source file and the source line number
* where the assert_param error has occurred .
* @ param file : pointer to the source file name
* @ param line : assert_param error line source number
* @ retval None
*/
2019-10-18 12:36:04 +01:00
void assert_failed ( uint8_t * file , uint32_t line )
2019-07-08 12:45:16 +01:00
{
/* User can add his own implementation to report the file name and line number,
ex : printf ( " Wrong parameters value: file %s on line %d \r \n " , file , line ) */
/* Infinite loop */
while ( 1 )
{
}
}
# endif
/**
* @ }
*/
/**
* @ }
*/