282 lines
8.5 KiB
C
Raw Normal View History

2019-07-08 12:45:16 +01:00
/**
******************************************************************************
* @file ADC/ADC_TriggerMode/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use Timer to trig ADC conversion.
******************************************************************************
* @attention
*
2019-10-18 12:36:04 +01:00
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
2019-07-08 12:45:16 +01:00
*
2019-10-18 12:36:04 +01:00
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
2019-07-08 12:45:16 +01:00
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F0xx_HAL_Examples
* @{
*/
/** @addtogroup ADC_TriggerMode
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* ADC handler declaration */
ADC_HandleTypeDef AdcHandle;
/* TIM handler declaration */
static TIM_HandleTypeDef htim;
/* Variable used to get converted value */
__IO uint16_t uhADCxConvertedValue = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void ADC_Config(void);
static void TIM_Config(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F0xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Low Level Initialization
*/
HAL_Init();
/* Configure LED3 */
BSP_LED_Init(LED3);
/* Configure the system clock to 48 MHz */
SystemClock_Config();
/*##-1- TIM Peripheral Configuration ######################################*/
TIM_Config();
/*##-2- Configure the ADC peripheral ######################################*/
ADC_Config();
/*##-4- Start the conversion process and enable interrupt ##################*/
if (HAL_ADC_Start_IT(&AdcHandle) != HAL_OK)
{
/* Start Conversation Error */
Error_Handler();
}
/*##-3- TIM counter enable ################################################*/
if (HAL_TIM_Base_Start(&htim) != HAL_OK)
{
/* Counter Enable Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI48)
* SYSCLK(Hz) = 48000000
* HCLK(Hz) = 48000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* HSI Frequency(Hz) = 48000000
* PREDIV = 2
* PLLMUL = 2
* Flash Latency(WS) = 1
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Select HSI48 Oscillator as PLL source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI48;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK and PCLK1 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1)!= HAL_OK)
{
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while (1)
{
}
}
/**
* @brief ADC configuration
* @param None
* @retval None
*/
static void ADC_Config(void)
{
ADC_ChannelConfTypeDef sConfig;
/* ADC Initialization */
AdcHandle.Instance = ADCx;
AdcHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
AdcHandle.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle.Init.ScanConvMode = DISABLE; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */
AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
AdcHandle.Init.LowPowerAutoWait = DISABLE;
AdcHandle.Init.LowPowerAutoPowerOff = DISABLE;
AdcHandle.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 conversion at each conversion trig */
AdcHandle.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */
AdcHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO; /* Conversion start trigged at each external event */
AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
AdcHandle.Init.DMAContinuousRequests = ENABLE;
AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
if (HAL_ADC_Init(&AdcHandle) != HAL_OK)
{
/* ADC initiliazation Error */
Error_Handler();
}
/* Configure ADC regular channel */
sConfig.Channel = ADCx_CHANNEL;
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES_5;
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
}
/**
* @brief TIM configuration
* @param None
* @retval None
*/
static void TIM_Config(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
/* Time Base configuration */
htim.Instance = TIMx;
htim.Init.Period = 2400;
htim.Init.Prescaler = 0;
htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim.Init.CounterMode = TIM_COUNTERMODE_UP;
htim.Init.RepetitionCounter = 0x0;
htim.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim) != HAL_OK)
{
/* Timer Initiliazation Error */
Error_Handler();
}
/* Timer TRGO selection */
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim, &sMasterConfig) != HAL_OK)
{
/* Timer TRGO selection Error */
Error_Handler();
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param AdcHandle : AdcHandle handle
* @note This example shows a simple way to report end of conversion, and
* you can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle)
{
/* Get the converted value of regular channel */
uhADCxConvertedValue = HAL_ADC_GetValue(AdcHandle);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
2019-10-18 12:36:04 +01:00
void assert_failed(uint8_t *file, uint32_t line)
2019-07-08 12:45:16 +01:00
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/