# 8.6 字符设备驱动 Linux 系统中,字符设备、块设备、网络设备是从使用角度来划分的。 字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据。字符设备是面向流的设备,常见的字符设备有鼠标、键盘、串口、控制台和 LED 设备等。 块设备:是指可以从设备的任意位置读取一定长度数据的设备。块设备包括硬盘、磁盘、U 盘和 SD 卡等。 ## 字符设备驱动示例 ```cpp /** * @file demo_char.c * @author Rick Chan (cy187lion@sina.com) * @brief Linux char driver demo. * @version 0.1.0 * @date 2020-04-27 * * @copyright Copyright (c) 2020 * */ #include #include #include #include #include #include #include #include MODULE_AUTHOR("Rick Chan"); MODULE_LICENSE("GPL"); #define DEMO_MAGIC 'R' #define DEMO_IOC_SIZE 8 #define DEMO_CTL_IOC _IOC(_IOC_READ|_IOC_WRITE, DEMO_MAGIC, 0, DEMO_IOC_SIZE) #define DEMO_CTL_IO _IO(DEMO_MAGIC, 1) #define DEMO_CTL_IOR _IOR(DEMO_MAGIC, 2, uint16_t) #define DEMO_CTL_IOW _IOW(DEMO_MAGIC, 3, int32_t) #define DEMO_CTL_IOWR _IOWR(DEMO_MAGIC, 4, uint32_t) #define DEMO_CTL_MAX 5 #define DEMO_MODULE_NAME "demo_char" #define DEMO_DEV_CNT 2 // This is a test. #define DEMO_DATA_SIZE 5 static int demo_major = 0; struct demo_dev { struct cdev cdev; struct device *dev; // This is a test. char demo_text[DEMO_DATA_SIZE]; }; struct class *class; struct demo_dev* demo_devp; static int demo_open(struct inode *inode, struct file *filp) { struct demo_dev *demo; demo = container_of(inode->i_cdev, struct demo_dev, cdev); filp->private_data = demo; return 0; } static int demo_release(struct inode *inode, struct file *filp) { return 0; } static loff_t demo_llseek(struct file *filp, loff_t offset, int origin) { struct demo_dev *devp = filp->private_data; loff_t ret; (void)devp; // This is a test. switch(origin) { case 0: // 从文件开头开始偏移 if(offset<0) { ret = -EINVAL; break; } if((unsigned int)offset>DEMO_DATA_SIZE) { ret = -EINVAL; break; } filp->f_pos = (unsigned int)offset; ret = filp->f_pos; break; case 1: // 从当前位置开始偏移 if((filp->f_pos+offset)>DEMO_DATA_SIZE) { ret = -EINVAL; break; } if((filp->f_pos+offset)<0) { ret = -EINVAL; break; } filp->f_pos += offset; ret = filp->f_pos; break; default: ret = -EINVAL; } return ret; return filp->f_pos; } static ssize_t demo_read(struct file *filp, char __user *buffer, size_t count, loff_t *position) { struct demo_dev *devp = filp->private_data; loff_t p = *position; ssize_t ret = 0; // This is a test. // 分析和获取有效的读长度 if(DEMO_DATA_SIZE<=p) // 要读的偏移位置越界 return 0; // End of a file if(DEMO_DATA_SIZE<(count+p)) // 要读的字节数太大 count = DEMO_DATA_SIZE-p; if(copy_to_user((void*)buffer, &devp->demo_text[p], count)) ret = -EFAULT; else { *position += count; ret = count; } return ret; } static ssize_t demo_write(struct file *filp, const char __user *buffer, size_t count, loff_t *position) { struct demo_dev *devp = filp->private_data; const char __user *p = buffer; (void)devp; return p-buffer; } static long demo_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct demo_dev *devp = filp->private_data; (void)devp; // 检测 cmd 合法性 if (DEMO_MAGIC!=_IOC_TYPE(cmd)) return -EINVAL; if (DEMO_CTL_MAX<_IOC_NR(cmd)) return -EINVAL; switch(cmd) { case DEMO_CTL_IOC: { uint8_t tmp[DEMO_IOC_SIZE]; copy_from_user(&tmp, (void*)arg, _IOC_SIZE(cmd)); copy_to_user((void*)arg, &tmp, _IOC_SIZE(cmd)); } break; case DEMO_CTL_IO: break; case DEMO_CTL_IOR: { uint16_t tmp = 0x55AA; copy_to_user((void*)arg, &tmp, _IOC_SIZE(cmd)); } break; case DEMO_CTL_IOW: { int32_t tmp = 0; copy_from_user(&tmp, (void*)arg, _IOC_SIZE(cmd)); } break; case DEMO_CTL_IOWR: { uint32_t tmp = 0; copy_from_user(&tmp, (void*)arg, _IOC_SIZE(cmd)); copy_to_user((void*)arg, &tmp, _IOC_SIZE(cmd)); } break; default: return -ENOIOCTLCMD; } return 0; } static int demo_mmap(struct file *filp, struct vm_area_struct *vma) { struct demo_dev *devp = filp->private_data; (void)devp; return 0; } static struct file_operations demo_fops = { .owner = THIS_MODULE, .open = demo_open, .release = demo_release, .llseek = demo_llseek, .read = demo_read, .write = demo_write, .unlocked_ioctl = demo_ioctl, .mmap = demo_mmap }; static int demo_setup_cdev(struct demo_dev *devp, int index) { char name[16]; int err, devno = MKDEV(demo_major, index); cdev_init(&devp->cdev, &demo_fops); devp->cdev.owner = THIS_MODULE; err = cdev_add(&devp->cdev, devno, 1); if(err) { printk(KERN_ERR "demo add cdev:%d error:%d.\r\n", index, err); goto out_cdev; } // 创建设备节点 memset(name, 0, 16); sprintf(name, DEMO_MODULE_NAME"%d", index); printk(KERN_INFO "demo new dev name:%s", name); devp->dev = device_create(class, NULL, devp->cdev.dev, NULL, name); // This is a test. devp->demo_text[DEMO_DATA_SIZE-2] = '\n'; devp->demo_text[DEMO_DATA_SIZE-1] = 0; sprintf(devp->demo_text, "%d", index); return 0; out_cdev: cdev_del(&devp->cdev); kfree(devp); return err; } static int __init demo_init(void) { int err, i; dev_t devno = MKDEV(demo_major, 0); printk(KERN_ALERT "demo_init.demo_major: %d\n", demo_major); if(demo_major) // 使用固定主设备号 err = register_chrdev_region(devno, DEMO_DEV_CNT, DEMO_MODULE_NAME); else // 动态分配主设备号 { err = alloc_chrdev_region(&devno, 0, DEMO_DEV_CNT, DEMO_MODULE_NAME); demo_major = MAJOR(devno); } if(err<0) return err; demo_devp = kzalloc(DEMO_DEV_CNT*sizeof(struct demo_dev), GFP_KERNEL); if(!demo_devp) { err = -ENOMEM; goto out; } // 创建设备类, 子设备属于同一个设备类 class = class_create(THIS_MODULE, DEMO_MODULE_NAME); for(i=0; icdev.dev); cdev_del(&devp->cdev); } static void __exit demo_exit(void) { int i; for(i=0; i"); MODULE_DESCRIPTION("Char driver demo"); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0.0"); ``` Makefile 文件如下: ```Makefile obj-m:= \ demochar.o demochar-objs:= \ demo_char.o EXTRA_CFLAGS += \ -I$(PWD) all: $(MAKE) -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules clean: $(MAKE) -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean ``` 编译和验证方法: ```bash make sudo insmod demochar.ko demo_major=200 ls /dev/demo* ll /sys/class/demo_char/ sudo rmmod demochar ``` ## 字符设备驱动示例说明 ### 设备分配设备号 MKDEV 是将主设备号和次设备号转换成 dev_t 类型的一个内核函数。dev_t 定义了设备号,为 32 位,其中高 12 位为主设备号,低 20 位为次设备号。使用下列宏可以从 dev_t 获得主设备号和次设备号。 ```cpp MAJOR(dev_t dev) MINOR(dev_t dev) ``` 以下两段代码: ```cpp err = register_chrdev_region(devno, DEMO_DEV_CNT, DEMO_MODULE_NAME); err = alloc_chrdev_region(&devno, 0, DEMO_DEV_CNT, DEMO_MODULE_NAME); ``` 用于向系统静态/动态申请设备号。其原型如下: ```cpp int register_chrdev_region(dev_t from, unsigned count, const char *name); int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name); ``` 是否为动态注册是在驱动加载时决定的,module_param 用于指定该模块参数: ```cpp module_param(demo_major, int, S_IRUGO); ``` 如果在加载驱动时没有指定设备号,则使用动态分配,否则使用静态分配。 ### 分配内存资源 kzalloc 可实现内核内存空间的分配: ```cpp demo_devp = kzalloc(DEMO_DEV_CNT*sizeof(struct demo_dev), GFP_KERNEL); ``` 用于分配 demo_dev 对象空间。 ### 注册字符设备 cdev_add() 函数和 cdev_del() 函数分别向系统添加和删除一个 cdev 对象,完成字符设备的注册和注销。对应代码如下: ```cpp err = cdev_add(&devp->cdev, devno, 1); cdev_del(&devp->cdev); ``` ### udev 文件系统 示例代码通过: ```cpp class = class_create(THIS_MODULE, DEMO_MODULE_NAME); devp->dev = device_create(class, NULL, devp->cdev.dev, NULL, name); ``` 两个接口来与 udev 文件系统交互,产生用户态设备加载消息,生成设备节点。 ### file_operations 示例通过以下代码注册了字符设备的操作接口函数: ```cpp static struct file_operations demo_fops = { .owner = THIS_MODULE, .open = demo_open, .release = demo_release, .llseek = demo_llseek, .read = demo_read, .write = demo_write, .unlocked_ioctl = demo_ioctl, .mmap = demo_mmap }; cdev_init(&devp->cdev, &demo_fops); ``` ### 访问用户态数据 内核中不能直接使用用户态数据,需要通过 copy_from_user() 和 copy_to_user() 将数据拷贝到内核,或将新数据拷贝回用户态。如 demo_read() 中的处理: ```cpp static ssize_t demo_read(struct file *filp, char __user *buffer, size_t count, loff_t *position) { struct demo_dev *devp = filp->private_data; loff_t p = *position; ssize_t ret = 0; // This is a test. // 分析和获取有效的读长度 if(DEMO_DATA_SIZE<=p) // 要读的偏移位置越界 return 0; // End of a file if(DEMO_DATA_SIZE<(count+p)) // 要读的字节数太大 count = DEMO_DATA_SIZE-p; if(copy_to_user((void*)buffer, &devp->demo_text[p], count)) ret = -EFAULT; else { *position += count; ret = count; } return ret; } ``` ### IOCTL 操作 示例定义了以下 IOCTL 类型: ```cpp #define DEMO_MAGIC 'R' #define DEMO_IOC_SIZE 8 #define DEMO_CTL_IOC _IOC(_IOC_READ|_IOC_WRITE, DEMO_MAGIC, 0, DEMO_IOC_SIZE) #define DEMO_CTL_IO _IO(DEMO_MAGIC, 1) #define DEMO_CTL_IOR _IOR(DEMO_MAGIC, 2, uint16_t) #define DEMO_CTL_IOW _IOW(DEMO_MAGIC, 3, int32_t) #define DEMO_CTL_IOWR _IOWR(DEMO_MAGIC, 4, uint32_t) ``` 用户态调用 ioctl 接口时,必须使用相同的宏,最后才会在 demo_ioctl() 中进行对应的分派处理。 * _IOC:用于定义 IOCTL 命令。 * _IOR:用于创建只读命令。 * _IOW:用于创建只写命令。 * _IOWR:用于创建读写命令。 ## 练习 1. 为字符设备驱动编写应用程序,用于验证各个接口。 2. 在字符设备驱动的 open、read、write、llseek、unlocked_ioctl 和 release 接口中增加 printk 函数,用于验证来自于用户态的操作。 3. 完善 demo_write() 函数,实现将用户数据写入内核空间,并最后可再通过 demo_read() 读出。