mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-28 13:48:56 +08:00
84 lines
2.0 KiB
Go
84 lines
2.0 KiB
Go
package meta
|
|
|
|
import (
|
|
"fmt"
|
|
base "github.com/sjwhitworth/golearn/base"
|
|
eval "github.com/sjwhitworth/golearn/evaluation"
|
|
filters "github.com/sjwhitworth/golearn/filters"
|
|
trees "github.com/sjwhitworth/golearn/trees"
|
|
"math/rand"
|
|
"testing"
|
|
"time"
|
|
)
|
|
|
|
func BenchmarkBaggingRandomForestFit(testEnv *testing.B) {
|
|
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
rand.Seed(time.Now().UnixNano())
|
|
filt := filters.NewChiMergeFilter(inst, 0.90)
|
|
filt.AddAllNumericAttributes()
|
|
filt.Build()
|
|
filt.Run(inst)
|
|
rf := new(BaggedModel)
|
|
for i := 0; i < 10; i++ {
|
|
rf.AddModel(trees.NewRandomTree(2))
|
|
}
|
|
testEnv.ResetTimer()
|
|
for i := 0; i < 20; i++ {
|
|
rf.Fit(inst)
|
|
}
|
|
}
|
|
|
|
func BenchmarkBaggingRandomForestPredict(testEnv *testing.B) {
|
|
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
rand.Seed(time.Now().UnixNano())
|
|
filt := filters.NewChiMergeFilter(inst, 0.90)
|
|
filt.AddAllNumericAttributes()
|
|
filt.Build()
|
|
filt.Run(inst)
|
|
rf := new(BaggedModel)
|
|
for i := 0; i < 10; i++ {
|
|
rf.AddModel(trees.NewRandomTree(2))
|
|
}
|
|
rf.Fit(inst)
|
|
testEnv.ResetTimer()
|
|
for i := 0; i < 20; i++ {
|
|
rf.Predict(inst)
|
|
}
|
|
}
|
|
|
|
func TestRandomForest1(testEnv *testing.T) {
|
|
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
rand.Seed(time.Now().UnixNano())
|
|
trainData, testData := base.InstancesTrainTestSplit(inst, 0.6)
|
|
filt := filters.NewChiMergeFilter(inst, 0.90)
|
|
filt.AddAllNumericAttributes()
|
|
filt.Build()
|
|
filt.Run(testData)
|
|
filt.Run(trainData)
|
|
rf := new(BaggedModel)
|
|
for i := 0; i < 10; i++ {
|
|
rf.AddModel(trees.NewRandomTree(2))
|
|
}
|
|
rf.Fit(trainData)
|
|
fmt.Println(rf)
|
|
predictions := rf.Predict(testData)
|
|
fmt.Println(predictions)
|
|
confusionMat := eval.GetConfusionMatrix(testData, predictions)
|
|
fmt.Println(confusionMat)
|
|
fmt.Println(eval.GetMacroPrecision(confusionMat))
|
|
fmt.Println(eval.GetMacroRecall(confusionMat))
|
|
fmt.Println(eval.GetSummary(confusionMat))
|
|
}
|