1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/trees/cart_classifier.go
2020-07-30 11:21:06 +05:30

416 lines
12 KiB
Go

package trees
import (
"fmt"
"math"
"sort"
"strconv"
"strings"
"github.com/sjwhitworth/golearn/base"
)
const (
GINI string = "gini"
ENTROPY string = "entropy"
)
// CNode is Node struct for Decision Tree Classifier.
// It holds the information for each split (which feature to use, what threshold, and which label to assign for each side of the split)
type classifierNode struct {
Left *classifierNode
Right *classifierNode
Threshold float64
Feature int64
LeftLabel int64
RightLabel int64
isNodeNeeded bool
}
// CARTDecisionTreeClassifier: Tree struct for Decision Tree Classifier
// It contains the rootNode, as well as all of the hyperparameters chosen by the user.
// It also keeps track of all splits done at the tree level.
type CARTDecisionTreeClassifier struct {
RootNode *classifierNode
criterion string
maxDepth int64
labels []int64
triedSplits [][]float64
}
// Calculate Gini Impurity of Target Labels
func computeGiniImpurityAndModeLabel(y []int64, labels []int64) (float64, int64) {
nInstances := len(y)
gini := 0.0
maxLabelCount := 0
var maxLabel int64 = 0
for label := range labels {
numLabel := 0
for target := range y {
if y[target] == labels[label] {
numLabel++
}
}
p := float64(numLabel) / float64(nInstances)
gini += p * (1 - p)
if numLabel > maxLabelCount {
maxLabel = labels[label]
maxLabelCount = numLabel
}
}
return gini, maxLabel
}
// Calculate Entropy loss of Target Labels
func computeEntropyAndModeLabel(y []int64, labels []int64) (float64, int64) {
nInstances := len(y)
entropy := 0.0
maxLabelCount := 0
var maxLabel int64 = 0
for label := range labels {
numLabel := 0
for target := range y {
if y[target] == labels[label] {
numLabel++
}
}
p := float64(numLabel) / float64(nInstances)
logP := math.Log2(p)
if p == 0 {
logP = 0
}
entropy += -p * logP
if numLabel > maxLabelCount {
maxLabel = labels[label]
maxLabelCount = numLabel
}
}
return entropy, maxLabel
}
func calculateClassificationLoss(y []int64, labels []int64, criterion string) (float64, int64) {
if criterion == GINI {
return computeGiniImpurityAndModeLabel(y, labels)
} else if criterion == ENTROPY {
return computeEntropyAndModeLabel(y, labels)
} else {
panic("Invalid impurity function, choose from GINI or ENTROPY")
}
}
// Split the data into left node and right node based on feature and threshold
func classifierCreateSplit(data [][]float64, feature int64, y []int64, threshold float64) ([][]float64, [][]float64, []int64, []int64) {
var left [][]float64
var right [][]float64
var lefty []int64
var righty []int64
for i := range data {
example := data[i]
if example[feature] < threshold {
left = append(left, example)
lefty = append(lefty, y[i])
} else {
right = append(right, example)
righty = append(righty, y[i])
}
}
return left, right, lefty, righty
}
// Function to Create New Decision Tree Classifier.
// It assigns all of the hyperparameters by user into the tree attributes.
func NewDecisionTreeClassifier(criterion string, maxDepth int64, labels []int64) *CARTDecisionTreeClassifier {
var tree CARTDecisionTreeClassifier
tree.criterion = strings.ToLower(criterion)
tree.maxDepth = maxDepth
tree.labels = labels
return &tree
}
// Reorder the data by feature being considered. Optimizes code by reducing the number of times we have to loop over data for splitting
func classifierReOrderData(featureVal []float64, data [][]float64, y []int64) ([][]float64, []int64) {
s := NewSlice(featureVal)
sort.Sort(s)
indexes := s.Idx
var dataSorted [][]float64
var ySorted []int64
for _, index := range indexes {
dataSorted = append(dataSorted, data[index])
ySorted = append(ySorted, y[index])
}
return dataSorted, ySorted
}
// Update the left and right side of the split based on the threshold.
func classifierUpdateSplit(left [][]float64, lefty []int64, right [][]float64, righty []int64, feature int64, threshold float64) ([][]float64, []int64, [][]float64, []int64) {
for right[0][feature] < threshold {
left = append(left, right[0])
right = right[1:]
lefty = append(lefty, righty[0])
righty = righty[1:]
}
return left, lefty, right, righty
}
// Fit - Creates an Emppty Root Node2
// Trains the tree by calling recursive function classifierBestSplit
func (tree *CARTDecisionTreeClassifier) Fit(X base.FixedDataGrid) {
var emptyNode classifierNode
data := convertInstancesToProblemVec(X)
y := classifierConvertInstancesToLabelVec(X)
emptyNode = classifierBestSplit(*tree, data, y, tree.labels, emptyNode, tree.criterion, tree.maxDepth, 0)
tree.RootNode = &emptyNode
}
// Iterativly find and record the best split
// Stop If depth reaches maxDepth or nodes are pure
func classifierBestSplit(tree CARTDecisionTreeClassifier, data [][]float64, y []int64, labels []int64, upperNode classifierNode, criterion string, maxDepth int64, depth int64) classifierNode {
// Ensure that we have not reached maxDepth. maxDepth =-1 means split until nodes are pure
depth++
if maxDepth != -1 && depth > maxDepth {
return upperNode
}
numFeatures := len(data[0])
var bestGini, origGini float64
// Calculate loss based on Criterion Specified by user
origGini, upperNode.LeftLabel = calculateClassificationLoss(y, labels, criterion)
bestGini = origGini
bestLeft, bestRight, bestLefty, bestRighty := data, data, y, y
numData := len(data)
bestLeftGini, bestRightGini := bestGini, bestGini
upperNode.isNodeNeeded = true
var leftN, rightN classifierNode
// Iterate over all features
for i := 0; i < numFeatures; i++ {
featureVal := getFeature(data, int64(i))
unique := findUnique(featureVal)
sort.Float64s(unique)
sortData, sortY := classifierReOrderData(featureVal, data, y)
firstTime := true
var left, right [][]float64
var lefty, righty []int64
// Iterate over all possible thresholds for that feature
for j := 0; j < len(unique)-1; j++ {
threshold := (unique[j] + unique[j+1]) / 2
// Ensure that same split has not been made before
if validate(tree.triedSplits, int64(i), threshold) {
// We need to split data from fresh when considering new feature for the first time.
// Otherwise, we need to update the split by moving data points from left to right.
if firstTime {
left, right, lefty, righty = classifierCreateSplit(sortData, int64(i), sortY, threshold)
firstTime = false
} else {
left, lefty, right, righty = classifierUpdateSplit(left, lefty, right, righty, int64(i), threshold)
}
var leftGini, rightGini float64
var leftLabels, rightLabels int64
leftGini, leftLabels = calculateClassificationLoss(lefty, labels, criterion)
rightGini, rightLabels = calculateClassificationLoss(righty, labels, criterion)
// Calculate weighted gini impurity of child nodes
subGini := (leftGini * float64(len(left)) / float64(numData)) + (rightGini * float64(len(right)) / float64(numData))
// If we find a split that reduces impurity
if subGini < bestGini {
bestGini = subGini
bestLeft, bestRight = left, right
bestLefty, bestRighty = lefty, righty
upperNode.Threshold, upperNode.Feature = threshold, int64(i)
upperNode.LeftLabel, upperNode.RightLabel = leftLabels, rightLabels
bestLeftGini, bestRightGini = leftGini, rightGini
}
}
}
}
// If no split was found, we don't want to use this node, so we will flag it
if bestGini == origGini {
upperNode.isNodeNeeded = false
return upperNode
}
// Until nodes are not pure
if bestGini > 0 {
// If left node is pure, no need to split on left side again
if bestLeftGini > 0 {
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
// Recursive splitting logic
leftN = classifierBestSplit(tree, bestLeft, bestLefty, labels, leftN, criterion, maxDepth, depth)
if leftN.isNodeNeeded == true {
upperNode.Left = &leftN
}
}
// If right node is pure, no need to split on right side again
if bestRightGini > 0 {
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
// Recursive splitting logic
rightN = classifierBestSplit(tree, bestRight, bestRighty, labels, rightN, criterion, maxDepth, depth)
if rightN.isNodeNeeded == true {
upperNode.Right = &rightN
}
}
}
// Return the node - contains all information regarding feature and threshold.
return upperNode
}
// String : this function prints out entire tree for visualization.
// Calls a recursive function to print the tree - classifierPrintTreeFromNode
func (tree *CARTDecisionTreeClassifier) String() string {
rootNode := *tree.RootNode
return classifierPrintTreeFromNode(rootNode, "")
}
func classifierPrintTreeFromNode(tree classifierNode, spacing string) string {
returnString := ""
returnString += spacing + "Feature "
returnString += strconv.FormatInt(tree.Feature, 10)
returnString += " < "
returnString += fmt.Sprintf("%.3f", tree.Threshold)
returnString += "\n"
if tree.Left == nil {
returnString += spacing + "---> True" + "\n"
returnString += " " + spacing + "PREDICT "
returnString += strconv.FormatInt(tree.LeftLabel, 10) + "\n"
}
if tree.Right == nil {
returnString += spacing + "---> False" + "\n"
returnString += " " + spacing + "PREDICT "
returnString += strconv.FormatInt(tree.RightLabel, 10) + "\n"
}
if tree.Left != nil {
returnString += spacing + "---> True" + "\n"
returnString += classifierPrintTreeFromNode(*tree.Left, spacing+" ")
}
if tree.Right != nil {
returnString += spacing + "---> False" + "\n"
returnString += classifierPrintTreeFromNode(*tree.Right, spacing+" ")
}
return returnString
}
// Predict a single data point by traversing the entire tree
// Uses recursive logic to navigate the tree.
func classifierPredictSingle(tree classifierNode, instance []float64) int64 {
if instance[tree.Feature] < tree.Threshold {
if tree.Left == nil {
return tree.LeftLabel
} else {
return classifierPredictSingle(*tree.Left, instance)
}
} else {
if tree.Right == nil {
return tree.RightLabel
} else {
return classifierPredictSingle(*tree.Right, instance)
}
}
}
// Given test data, return predictions for every datapoint. calls classifierPredictFromNode
func (tree *CARTDecisionTreeClassifier) Predict(X_test base.FixedDataGrid) []int64 {
root := *tree.RootNode
test := convertInstancesToProblemVec(X_test)
return classifierPredictFromNode(root, test)
}
// This function uses the rootnode from Predict.
// It iterates through every data point and calls the recursive function to give predictions and then summarizes them.
func classifierPredictFromNode(tree classifierNode, test [][]float64) []int64 {
var preds []int64
for i := range test {
iPred := classifierPredictSingle(tree, test[i])
preds = append(preds, iPred)
}
return preds
}
// Given Test data and label, return the accuracy of the classifier.
// First it retreives predictions from the data, then compares for accuracy.
// Calls classifierEvaluateFromNode
func (tree *CARTDecisionTreeClassifier) Evaluate(test base.FixedDataGrid) float64 {
rootNode := *tree.RootNode
xTest := convertInstancesToProblemVec(test)
yTest := classifierConvertInstancesToLabelVec(test)
return classifierEvaluateFromNode(rootNode, xTest, yTest)
}
// Retrieve predictions and then calculate accuracy.
func classifierEvaluateFromNode(tree classifierNode, xTest [][]float64, yTest []int64) float64 {
preds := classifierPredictFromNode(tree, xTest)
accuracy := 0.0
for i := range preds {
if preds[i] == yTest[i] {
accuracy++
}
}
accuracy /= float64(len(yTest))
return accuracy
}
// Helper function to convert base.FixedDataGrid into required format. Called in Fit, Predict
func classifierConvertInstancesToLabelVec(X base.FixedDataGrid) []int64 {
// Get the class Attributes
classAttrs := X.AllClassAttributes()
// Only support 1 class Attribute
if len(classAttrs) != 1 {
panic(fmt.Sprintf("%d ClassAttributes (1 expected)", len(classAttrs)))
}
// ClassAttribute must be numeric
if _, ok := classAttrs[0].(*base.FloatAttribute); !ok {
panic(fmt.Sprintf("%s: ClassAttribute must be a FloatAttribute", classAttrs[0]))
}
// Allocate return structure
_, rows := X.Size()
// labelVec := make([]float64, rows)
labelVec := make([]int64, rows)
// Resolve class Attribute specification
classAttrSpecs := base.ResolveAttributes(X, classAttrs)
X.MapOverRows(classAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
labelVec[rowNo] = int64(base.UnpackBytesToFloat(row[0]))
return true, nil
})
return labelVec
}