1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-28 13:48:56 +08:00
golearn/meta/bagging_test.go
Richard Townsend ce2afe34fb Benchmarking
2014-05-23 12:16:11 +01:00

84 lines
2.0 KiB
Go

package meta
import (
"fmt"
base "github.com/sjwhitworth/golearn/base"
eval "github.com/sjwhitworth/golearn/evaluation"
filters "github.com/sjwhitworth/golearn/filters"
trees "github.com/sjwhitworth/golearn/trees"
"math/rand"
"testing"
"time"
)
func BenchmarkBaggingRandomForestFit(testEnv *testing.B) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
rand.Seed(time.Now().UnixNano())
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
filt.Run(inst)
rf := new(BaggedModel)
for i := 0; i < 10; i++ {
rf.AddModel(trees.NewRandomTree(2))
}
testEnv.ResetTimer()
for i := 0; i < 20; i++ {
rf.Fit(inst)
}
}
func BenchmarkBaggingRandomForestPredict(testEnv *testing.B) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
rand.Seed(time.Now().UnixNano())
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
filt.Run(inst)
rf := new(BaggedModel)
for i := 0; i < 10; i++ {
rf.AddModel(trees.NewRandomTree(2))
}
rf.Fit(inst)
testEnv.ResetTimer()
for i := 0; i < 20; i++ {
rf.Predict(inst)
}
}
func TestRandomForest1(testEnv *testing.T) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
rand.Seed(time.Now().UnixNano())
insts := base.InstancesTrainTestSplit(inst, 0.6)
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
filt.Run(insts[1])
filt.Run(insts[0])
rf := new(BaggedModel)
for i := 0; i < 10; i++ {
rf.AddModel(trees.NewRandomTree(2))
}
rf.Fit(insts[0])
fmt.Println(rf)
predictions := rf.Predict(insts[1])
fmt.Println(predictions)
confusionMat := eval.GetConfusionMatrix(insts[1], predictions)
fmt.Println(confusionMat)
fmt.Println(eval.GetMacroPrecision(confusionMat))
fmt.Println(eval.GetMacroRecall(confusionMat))
fmt.Println(eval.GetSummary(confusionMat))
}