1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-28 13:48:56 +08:00
golearn/knn/knn.go
2013-12-28 23:48:12 +00:00

124 lines
2.6 KiB
Go

package main
import (
mat "github.com/skelterjohn/go.matrix"
rand "math/rand"
"math"
"fmt"
"sort"
"../base"
// "errors""
)
//Sorts a map by value size in .s property
type sortedMap struct {
m map[int]float64
s []int
}
func (sm *sortedMap) Len() int {
return len(sm.m)
}
func (sm *sortedMap) Less(i, j int) bool {
return sm.m[sm.s[i]] < sm.m[sm.s[j]]
}
func (sm *sortedMap) Swap(i, j int) {
sm.s[i], sm.s[j] = sm.s[j], sm.s[i]
}
func sortMap(m map[int]float64) []int {
sm := new(sortedMap)
sm.m = m
sm.s = make([]int, len(m))
i := 0
for key, _ := range m {
sm.s[i] = key
i++
}
sort.Sort(sm)
return sm.s
}
//A KNN Classifier. Consists of a data matrix, associated labels in the same order as the matrix, and a name.
type KNNClassifier struct {
Data mat.DenseMatrix
Name string
Labels []string
}
func RandomArray(n int) []float64 {
ReturnedArray := make([]float64, n)
for i := 0; i < n; i++ {
ReturnedArray[i] = rand.Float64()
}
return ReturnedArray
}
//Mints a new classifier.
func (KNN *KNNClassifier) New(name string, labels []string, numbers []float64, x int, y int) {
// if x != len(KNN.Labels) {
// return errors.New("KNN: There must be a label for each row")
// }
KNN.Data = *mat.MakeDenseMatrix(numbers, x, y)
KNN.Name = name
KNN.Labels = labels
}
//Computes the Euclidean distance between two vectors.
func (KNN *KNNClassifier) ComputeDistance(vector *mat.DenseMatrix, testrow *mat.DenseMatrix) float64 {
var sum float64
difference, err := testrow.MinusDense(vector)
flat := difference.Array()
if err != nil {
fmt.Println(err)
}
for _, i := range flat {
squared := math.Pow(i, 2)
sum += squared
}
eucdistance := math.Sqrt(sum)
return eucdistance
}
//Returns a classification for the vector, based on a vector input, using the KNN algorithm.
func (KNN *KNNClassifier) Predict(vector *mat.DenseMatrix, K int) ([]string, []int) {
rows := KNN.Data.Rows()
rownumbers := make(map[int]float64)
labels := make([]string, 1)
for i := 0; i < rows; i++{
row := KNN.Data.GetRowVector(i)
eucdistance := KNN.ComputeDistance(row, vector)
rownumbers[i] = eucdistance
}
sorted := sortMap(rownumbers)
values := sorted[:K]
for _, elem := range values {
labels = append(labels, KNN.Labels[elem])
}
return labels, values
}
func main(){
cols, rows, _, labels, data := base.ParseCsv("/Users/stephenwhitworth/Desktop/model.csv", 1, []int{2,3})
knn := KNNClassifier{}
random := mat.MakeDenseMatrix([]float64{4,4},1,2)
knn.New("Testing", labels, data, rows, cols)
for {
labels, _ := knn.Predict(random, 20)
fmt.Println(labels)
}
}