mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-28 13:48:56 +08:00
124 lines
2.6 KiB
Go
124 lines
2.6 KiB
Go
package main
|
|
|
|
import (
|
|
mat "github.com/skelterjohn/go.matrix"
|
|
rand "math/rand"
|
|
"math"
|
|
"fmt"
|
|
"sort"
|
|
"../base"
|
|
// "errors""
|
|
)
|
|
|
|
//Sorts a map by value size in .s property
|
|
type sortedMap struct {
|
|
m map[int]float64
|
|
s []int
|
|
}
|
|
|
|
func (sm *sortedMap) Len() int {
|
|
return len(sm.m)
|
|
}
|
|
|
|
func (sm *sortedMap) Less(i, j int) bool {
|
|
return sm.m[sm.s[i]] < sm.m[sm.s[j]]
|
|
}
|
|
|
|
func (sm *sortedMap) Swap(i, j int) {
|
|
sm.s[i], sm.s[j] = sm.s[j], sm.s[i]
|
|
}
|
|
|
|
func sortMap(m map[int]float64) []int {
|
|
sm := new(sortedMap)
|
|
sm.m = m
|
|
sm.s = make([]int, len(m))
|
|
i := 0
|
|
for key, _ := range m {
|
|
sm.s[i] = key
|
|
i++
|
|
}
|
|
sort.Sort(sm)
|
|
return sm.s
|
|
}
|
|
|
|
//A KNN Classifier. Consists of a data matrix, associated labels in the same order as the matrix, and a name.
|
|
type KNNClassifier struct {
|
|
Data mat.DenseMatrix
|
|
Name string
|
|
Labels []string
|
|
}
|
|
|
|
func RandomArray(n int) []float64 {
|
|
ReturnedArray := make([]float64, n)
|
|
for i := 0; i < n; i++ {
|
|
ReturnedArray[i] = rand.Float64()
|
|
}
|
|
return ReturnedArray
|
|
}
|
|
|
|
//Mints a new classifier.
|
|
func (KNN *KNNClassifier) New(name string, labels []string, numbers []float64, x int, y int) {
|
|
|
|
// if x != len(KNN.Labels) {
|
|
// return errors.New("KNN: There must be a label for each row")
|
|
// }
|
|
|
|
KNN.Data = *mat.MakeDenseMatrix(numbers, x, y)
|
|
KNN.Name = name
|
|
KNN.Labels = labels
|
|
}
|
|
|
|
//Computes the Euclidean distance between two vectors.
|
|
func (KNN *KNNClassifier) ComputeDistance(vector *mat.DenseMatrix, testrow *mat.DenseMatrix) float64 {
|
|
var sum float64
|
|
|
|
difference, err := testrow.MinusDense(vector)
|
|
flat := difference.Array()
|
|
|
|
if err != nil {
|
|
fmt.Println(err)
|
|
}
|
|
|
|
for _, i := range flat {
|
|
squared := math.Pow(i, 2)
|
|
sum += squared
|
|
}
|
|
|
|
eucdistance := math.Sqrt(sum)
|
|
return eucdistance
|
|
}
|
|
|
|
//Returns a classification for the vector, based on a vector input, using the KNN algorithm.
|
|
func (KNN *KNNClassifier) Predict(vector *mat.DenseMatrix, K int) ([]string, []int) {
|
|
|
|
rows := KNN.Data.Rows()
|
|
rownumbers := make(map[int]float64)
|
|
labels := make([]string, 1)
|
|
|
|
for i := 0; i < rows; i++{
|
|
row := KNN.Data.GetRowVector(i)
|
|
eucdistance := KNN.ComputeDistance(row, vector)
|
|
rownumbers[i] = eucdistance
|
|
}
|
|
|
|
sorted := sortMap(rownumbers)
|
|
values := sorted[:K]
|
|
|
|
for _, elem := range values {
|
|
labels = append(labels, KNN.Labels[elem])
|
|
}
|
|
|
|
return labels, values
|
|
}
|
|
|
|
func main(){
|
|
cols, rows, _, labels, data := base.ParseCsv("/Users/stephenwhitworth/Desktop/model.csv", 1, []int{2,3})
|
|
knn := KNNClassifier{}
|
|
random := mat.MakeDenseMatrix([]float64{4,4},1,2)
|
|
knn.New("Testing", labels, data, rows, cols)
|
|
|
|
for {
|
|
labels, _ := knn.Predict(random, 20)
|
|
fmt.Println(labels)
|
|
}
|
|
} |