1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/trees/tree_bench_test.go
Ilya Tocar 676f69a426 trees: speed-up training
Avoid quadratic loop in getNumericAttributeEntropy.
We don't need to recalculate whole distribution for each split,
just move changed values. Also use array of slices instead of
map of maps of strings to avoid map overhead.

For our case I see time reductions from 100+ hours to 50 minutes.
I've added benchmark with synthetic data (iris.csv repeated 100 times)
and it also shows a nice improvement:

name               old time/op  new time/op  delta
RandomForestFit-8    117s ± 4%      0s ± 1%  -99.61%  (p=0.001 n=5+10)

0 is a rounding quirk of benchstat, it should be closer to 0.5s:

name               time/op
RandomForestFit-8  460ms ± 1%
2018-05-08 14:59:41 -05:00

21 lines
491 B
Go

package trees_test
import (
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/ensemble"
"testing"
)
func BenchmarkRandomForestFit(b *testing.B) {
// benchdata.csv contains ../examples/datasets/iris.csv repeated 100 times.
data, err := base.ParseCSVToInstances("benchdata.csv", true)
if err != nil {
b.Fatalf("Cannot load benchdata.csv err:\n%v", err)
}
b.ResetTimer()
tree := ensemble.NewRandomForest(20, 4)
for i := 0; i < b.N; i++ {
tree.Fit(data)
}
}