1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/meta/bagging.go
2018-06-16 22:11:59 +08:00

351 lines
9.8 KiB
Go

package meta
import (
"fmt"
"github.com/sjwhitworth/golearn/base"
"math/rand"
"runtime"
"strings"
"sync"
)
// BaggedModel trains base.Classifiers on subsets of the original
// Instances and combine the results through voting
type BaggedModel struct {
base.BaseClassifier
Models []base.Classifier
RandomFeatures int
lock sync.Mutex
selectedAttributes map[int][]base.Attribute
fitOn base.FixedDataGrid
}
// generateTrainingAttrs selects RandomFeatures number of base.Attributes from
// the provided base.Instances.
func (b *BaggedModel) generateTrainingAttrs(model int, from base.FixedDataGrid) []base.Attribute {
ret := make([]base.Attribute, 0)
attrs := base.NonClassAttributes(from)
if b.RandomFeatures == 0 {
ret = attrs
} else {
for {
if len(ret) >= b.RandomFeatures {
break
}
attrIndex := rand.Intn(len(attrs))
attr := attrs[attrIndex]
matched := false
for _, a := range ret {
if a.Equals(attr) {
matched = true
break
}
}
if !matched {
ret = append(ret, attr)
}
}
}
for _, a := range from.AllClassAttributes() {
ret = append(ret, a)
}
b.lock.Lock()
b.selectedAttributes[model] = ret
b.lock.Unlock()
return ret
}
// generatePredictionInstances returns a modified version of the
// requested base.Instances with only the base.Attributes selected
// for training the model.
func (b *BaggedModel) generatePredictionInstances(model int, from base.FixedDataGrid) base.FixedDataGrid {
selected := b.selectedAttributes[model]
return base.NewInstancesViewFromAttrs(from, selected)
}
// generateTrainingInstances generates RandomFeatures number of
// attributes and returns a modified version of base.Instances
// for training the model
func (b *BaggedModel) generateTrainingInstances(model int, from base.FixedDataGrid) base.FixedDataGrid {
_, rows := from.Size()
insts := base.SampleWithReplacement(from, rows)
selected := b.generateTrainingAttrs(model, from)
return base.NewInstancesViewFromAttrs(insts, selected)
}
// AddModel adds a base.Classifier to the current model
func (b *BaggedModel) AddModel(m base.Classifier) {
b.Models = append(b.Models, m)
}
// Fit generates and trains each model on a randomised subset of
// Instances.
func (b *BaggedModel) Fit(from base.FixedDataGrid) {
var wait sync.WaitGroup
b.selectedAttributes = make(map[int][]base.Attribute)
for i, m := range b.Models {
wait.Add(1)
go func(c base.Classifier, f base.FixedDataGrid, model int) {
l := b.generateTrainingInstances(model, f)
c.Fit(l)
wait.Done()
}(m, from, i)
}
wait.Wait()
b.fitOn = base.NewStructuralCopy(from)
}
// Predict gathers predictions from all the classifiers
// and outputs the most common (majority) class
//
// IMPORTANT: in the event of a tie, the first class which
// achieved the tie value is output.
func (b *BaggedModel) Predict(from base.FixedDataGrid) (base.FixedDataGrid, error) {
n := runtime.NumCPU()
// Channel to receive the results as they come in
votes := make(chan base.DataGrid, n)
// Count the votes for each class
voting := make(map[int](map[string]int))
// Create a goroutine to collect the votes
var votingwait sync.WaitGroup
votingwait.Add(1)
go func() {
for { // Need to resolve the voting problem
incoming, ok := <-votes
if ok {
cSpecs := base.ResolveAttributes(incoming, incoming.AllClassAttributes())
incoming.MapOverRows(cSpecs, func(row [][]byte, predRow int) (bool, error) {
// Check if we've seen this class before...
if _, ok := voting[predRow]; !ok {
// If we haven't, create an entry
voting[predRow] = make(map[string]int)
// Continue on the current row
}
voting[predRow][base.GetClass(incoming, predRow)]++
return true, nil
})
} else {
votingwait.Done()
break
}
}
}()
// Create workers to process the predictions
processpipe := make(chan int, n)
var processwait sync.WaitGroup
for i := 0; i < n; i++ {
processwait.Add(1)
go func() {
for {
if i, ok := <-processpipe; ok {
c := b.Models[i]
l := b.generatePredictionInstances(i, from)
v, _ := c.Predict(l)
votes <- v
} else {
processwait.Done()
break
}
}
}()
}
// Send all the models to the workers for prediction
for i := range b.Models {
processpipe <- i
}
close(processpipe) // Finished sending models to be predicted
processwait.Wait() // Predictors all finished processing
close(votes) // Close the vote channel and allow it to drain
votingwait.Wait() // All the votes are in
// Generate the overall consensus
ret := base.GeneratePredictionVector(from)
for i := range voting {
maxClass := ""
maxCount := 0
// Find the most popular class
for c := range voting[i] {
votes := voting[i][c]
if votes > maxCount {
maxClass = c
maxCount = votes
}
}
base.SetClass(ret, i, maxClass)
}
return ret, nil
}
// String returns a human-readable representation of the
// BaggedModel and everything it contains
func (b *BaggedModel) String() string {
children := make([]string, 0)
for i, m := range b.Models {
children = append(children, fmt.Sprintf("%d: %s", i, m))
}
return fmt.Sprintf("BaggedModel(\n%s)", strings.Join(children, "\n\t"))
}
// GetMetadata returns required serialization information for this classifier
func (b *BaggedModel) GetMetadata() base.ClassifierMetadataV1 {
return base.ClassifierMetadataV1{
FormatVersion: 1,
ClassifierName: "BaggedModel",
ClassifierVersion: "1.0",
ClassifierMetadata: nil,
}
}
func (b *BaggedModel) Save(filePath string) error {
writer, err := base.CreateSerializedClassifierStub(filePath, b.GetMetadata())
if err != nil {
return err
}
err = b.SaveWithPrefix(writer, "")
writer.Close()
return err
}
func (b *BaggedModel) Load(filePath string) error {
reader, err := base.ReadSerializedClassifierStub(filePath)
if err != nil {
return err
}
err = b.LoadWithPrefix(reader, "")
reader.Close()
return err
}
/* type BaggedModel struct {
base.BaseClassifier
Models []base.Classifier
RandomFeatures int
lock sync.Mutex
selectedAttributes map[int][]base.Attribute, always RandomFeatures in length
}*/
func (b *BaggedModel) SaveWithPrefix(writer *base.ClassifierSerializer, prefix string) error {
b.lock.Lock()
defer b.lock.Unlock()
pI := func(n string, i int) string {
return writer.Prefix(prefix, writer.Prefix(n, fmt.Sprintf("%d", i)))
}
// Export the number of random features
randomFeaturesKey := writer.Prefix(prefix, "NUM_RANDOM_FEATURES")
err := writer.WriteU64ForKey(randomFeaturesKey, uint64(b.RandomFeatures))
if err != nil {
return base.DescribeError("Can't write NUM_RANDOM_FEATURES", err)
}
// Write the number of classifiers
classifiersKey := writer.Prefix(prefix, "NUM_CLASSIFIERS")
err = writer.WriteU64ForKey(classifiersKey, uint64(len(b.Models)))
if err != nil {
return base.DescribeError("Can't write NUM_CLASSIFIERS", err)
}
// Save the classifiers
for i, c := range b.Models {
clsPrefix := fmt.Sprintf("%s/", pI("CLASSIFIERS", i))
err = c.SaveWithPrefix(writer, clsPrefix)
if err != nil {
return base.FormatError(err, "Can't save classifier %d", i)
}
}
// Save the instances template
err = writer.WriteInstancesForKey(writer.Prefix(prefix, "REFERENCE_INSTANCES"), b.fitOn, false)
if err != nil {
return base.DescribeError("Can't write REFERENCE_INSTANCES", err)
}
// Save the selectedAttributes map
selectedAttributesKey := writer.Prefix(prefix, "SELECTED_ATTRIBUTES")
ser := make(map[int][][]byte)
for key := range b.selectedAttributes {
ser[key] = make([][]byte, 0)
for _, a := range b.selectedAttributes[key] {
bytes, err := base.SerializeAttribute(a)
if err != nil {
return base.DescribeError("Can't serialize Attribute", err)
}
ser[key] = append(ser[key], bytes)
}
}
err = writer.WriteJSONForKey(selectedAttributesKey, ser)
if err != nil {
return base.DescribeError("Can't write selected attributes map", err)
}
return nil
}
// Remember: have to add the models before you use this.
func (b *BaggedModel) LoadWithPrefix(reader *base.ClassifierDeserializer, prefix string) error {
b.lock.Lock()
defer b.lock.Unlock()
pI := func(n string, i int) string {
return reader.Prefix(prefix, reader.Prefix(n, fmt.Sprintf("%d", i)))
}
// Read the essential info
randomFeaturesKey := reader.Prefix(prefix, "NUM_RANDOM_FEATURES")
randomFeatures, err := reader.GetU64ForKey(randomFeaturesKey)
if err != nil {
return base.DescribeError("Can't read NUM_RANDOM_FEATURES", err)
}
b.RandomFeatures = int(randomFeatures)
// Reload the classifiers
for i, m := range b.Models {
clsPrefix := fmt.Sprintf("%s/", pI("CLASSIFIERS", i))
err := m.LoadWithPrefix(reader, clsPrefix)
if err != nil {
return base.DescribeError("Can't read classifier", err)
}
}
// Load the instances template
tmp, err := reader.GetInstancesForKey(reader.Prefix(prefix, "REFERENCE_INSTANCES"))
if err != nil {
return base.DescribeError("Can't read REFERENCE_INSTACES", err)
}
b.fitOn = tmp
// Reload the selected attributes
selectedAttributesKey := reader.Prefix(prefix, "SELECTED_ATTRIBUTES")
ser := make(map[int][][]byte)
err = reader.GetJSONForKey(selectedAttributesKey, &ser)
if err != nil {
return base.DescribeError("Can't reload selected attributes", err)
}
b.selectedAttributes = make(map[int][]base.Attribute)
for key := range ser {
b.selectedAttributes[key] = make([]base.Attribute, len(ser[key]))
for i, attrBytes := range ser[key] {
attr, err := base.DeserializeAttribute(attrBytes)
if err != nil {
return base.DescribeError("Can't deserialize attribute", err)
}
attrNew, err := base.ReplaceDeserializedAttributeWithVersionFromInstances(attr, b.fitOn)
if err != nil {
return base.DescribeError("Can't replace attribute", err)
}
b.selectedAttributes[key][i] = attrNew
}
}
return nil
}