1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/naive/bernoulli_nb_test.go

143 lines
4.5 KiB
Go

package naive
import (
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/filters"
. "github.com/smartystreets/goconvey/convey"
"io/ioutil"
"os"
"testing"
)
func TestNoFit(t *testing.T) {
Convey("Given an empty BernoulliNaiveBayes", t, func() {
nb := NewBernoulliNBClassifier()
Convey("PredictOne should panic if Fit was not called", func() {
testDoc := [][]byte{[]byte{0}, []byte{1}}
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
})
})
}
func convertToBinary(src base.FixedDataGrid) base.FixedDataGrid {
// Convert to binary
b := filters.NewBinaryConvertFilter()
attrs := base.NonClassAttributes(src)
for _, a := range attrs {
b.AddAttribute(a)
}
b.Train()
ret := base.NewLazilyFilteredInstances(src, b)
return ret
}
func TestSerialize(t *testing.T) {
Convey("Given simple training/test data", t, func() {
trainingData, err := base.ParseCSVToInstances("test/simple_train.csv", false)
So(err, ShouldBeNil)
testData, err := base.ParseCSVToTemplatedInstances("test/simple_test.csv", false, trainingData)
So(err, ShouldBeNil)
nb := NewBernoulliNBClassifier()
nb.Fit(convertToBinary(trainingData))
oldPredictions, err := nb.Predict(convertToBinary(testData))
Convey("Saving the classifer should work...", func() {
f, err := ioutil.TempFile(os.TempDir(), "nb")
So(err, ShouldBeNil)
defer func() {
f.Close()
}()
err = nb.Save(f.Name())
So(err, ShouldBeNil)
Convey("Loading the classifier should work...", func() {
newNb := NewBernoulliNBClassifier()
err := newNb.Load(f.Name())
So(err, ShouldBeNil)
Convey("Predictions should match...", func() {
newPredictions, err := newNb.Predict(convertToBinary(testData))
So(err, ShouldBeNil)
So(base.InstancesAreEqual(oldPredictions, newPredictions), ShouldBeTrue)
})
})
})
})
}
func TestSimple(t *testing.T) {
Convey("Given a simple training dataset", t, func() {
trainingData, err := base.ParseCSVToInstances("test/simple_train.csv", false)
So(err, ShouldBeNil)
nb := NewBernoulliNBClassifier()
nb.Fit(convertToBinary(trainingData))
Convey("Check if Fit is working as expected", func() {
Convey("All data needed for prior should be correctly calculated", func() {
So(nb.classInstances["blue"], ShouldEqual, 2)
So(nb.classInstances["red"], ShouldEqual, 2)
So(nb.trainingInstances, ShouldEqual, 4)
})
Convey("'red' conditional probabilities should be correct", func() {
logCondProbTok0 := nb.condProb["red"][0]
logCondProbTok1 := nb.condProb["red"][1]
logCondProbTok2 := nb.condProb["red"][2]
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
So(logCondProbTok1, ShouldAlmostEqual, 1.0/3.0)
So(logCondProbTok2, ShouldAlmostEqual, 1.0)
})
Convey("'blue' conditional probabilities should be correct", func() {
logCondProbTok0 := nb.condProb["blue"][0]
logCondProbTok1 := nb.condProb["blue"][1]
logCondProbTok2 := nb.condProb["blue"][2]
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
So(logCondProbTok1, ShouldAlmostEqual, 1.0)
So(logCondProbTok2, ShouldAlmostEqual, 1.0/3.0)
})
})
Convey("PredictOne should work as expected", func() {
Convey("Using a document with different number of cols should panic", func() {
testDoc := [][]byte{[]byte{0}, []byte{2}}
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
})
Convey("Token 1 should be a good predictor of the blue class", func() {
testDoc := [][]byte{[]byte{0}, []byte{1}, []byte{0}}
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
testDoc = [][]byte{[]byte{1}, []byte{1}, []byte{0}}
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
})
Convey("Token 2 should be a good predictor of the red class", func() {
testDoc := [][]byte{[]byte{0}, []byte{0}, []byte{1}}
So(nb.PredictOne(testDoc), ShouldEqual, "red")
testDoc = [][]byte{[]byte{1}, []byte{0}, []byte{1}}
So(nb.PredictOne(testDoc), ShouldEqual, "red")
})
})
Convey("Predict should work as expected", func() {
testData, err := base.ParseCSVToTemplatedInstances("test/simple_test.csv", false, trainingData)
So(err, ShouldBeNil)
predictions, err := nb.Predict(convertToBinary(testData))
So(err, ShouldBeNil)
Convey("All simple predictions should be correct", func() {
So(base.GetClass(predictions, 0), ShouldEqual, "blue")
So(base.GetClass(predictions, 1), ShouldEqual, "red")
So(base.GetClass(predictions, 2), ShouldEqual, "blue")
So(base.GetClass(predictions, 3), ShouldEqual, "red")
})
})
})
}