1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-05-03 22:17:14 +08:00
golearn/naive/bernoulli_nb_test.go
Thiago Cardoso 94ef107fc8 Removed class prior pre-calculation
Since the number of instances in each class are stored, there is no need
to keep the pre-calculated priors.
2014-06-08 00:01:42 -03:00

97 lines
3.6 KiB
Go

package naive
import (
"github.com/sjwhitworth/golearn/base"
"testing"
. "github.com/smartystreets/goconvey/convey"
)
func TestNoFit(t *testing.T) {
Convey("Given an empty BernoulliNaiveBayes", t, func() {
nb := NewBernoulliNBClassifier()
Convey("PredictOne should panic if Fit was not called", func() {
testDoc := []float64{0.0, 1.0}
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
})
})
}
func TestSimple(t *testing.T) {
Convey("Given a simple training data", t, func() {
trainingData, err1 := base.ParseCSVToInstances("test/simple_train.csv", false)
if err1 != nil {
t.Error(err1)
}
nb := NewBernoulliNBClassifier()
nb.Fit(trainingData)
Convey("Check if Fit is working as expected", func() {
Convey("All data needed for prior should be correctly calculated", func() {
So(nb.classInstances["blue"], ShouldEqual, 2)
So(nb.classInstances["red"], ShouldEqual, 2)
So(nb.trainingInstances, ShouldEqual, 4)
})
Convey("'red' conditional probabilities should be correct", func() {
logCondProbTok0 := nb.condProb["red"][0]
logCondProbTok1 := nb.condProb["red"][1]
logCondProbTok2 := nb.condProb["red"][2]
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
So(logCondProbTok1, ShouldAlmostEqual, 1.0/3.0)
So(logCondProbTok2, ShouldAlmostEqual, 1.0)
})
Convey("'blue' conditional probabilities should be correct", func() {
logCondProbTok0 := nb.condProb["blue"][0]
logCondProbTok1 := nb.condProb["blue"][1]
logCondProbTok2 := nb.condProb["blue"][2]
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
So(logCondProbTok1, ShouldAlmostEqual, 1.0)
So(logCondProbTok2, ShouldAlmostEqual, 1.0/3.0)
})
})
Convey("PredictOne should work as expected", func() {
Convey("Using a document with different number of cols should panic", func() {
testDoc := []float64{0.0, 2.0}
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
})
Convey("Token 1 should be a good predictor of the blue class", func() {
testDoc := []float64{0.0, 123.0, 0.0}
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
testDoc = []float64{120.0, 123.0, 0.0}
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
})
Convey("Token 2 should be a good predictor of the red class", func() {
testDoc := []float64{0.0, 0.0, 120.0}
So(nb.PredictOne(testDoc), ShouldEqual, "red")
testDoc = []float64{10.0, 0.0, 120.0}
So(nb.PredictOne(testDoc), ShouldEqual, "red")
})
})
Convey("Predict should work as expected", func() {
testData, err := base.ParseCSVToInstances("test/simple_test.csv", false)
if err != nil {
t.Error(err)
}
predictions := nb.Predict(testData)
Convey("All simple predicitions should be correct", func() {
So(predictions.GetClass(0), ShouldEqual, "blue")
So(predictions.GetClass(1), ShouldEqual, "red")
So(predictions.GetClass(2), ShouldEqual, "blue")
So(predictions.GetClass(3), ShouldEqual, "red")
})
})
})
}