mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-05-03 22:17:14 +08:00

Since the number of instances in each class are stored, there is no need to keep the pre-calculated priors.
97 lines
3.6 KiB
Go
97 lines
3.6 KiB
Go
package naive
|
|
|
|
import (
|
|
"github.com/sjwhitworth/golearn/base"
|
|
"testing"
|
|
. "github.com/smartystreets/goconvey/convey"
|
|
)
|
|
|
|
func TestNoFit(t *testing.T) {
|
|
Convey("Given an empty BernoulliNaiveBayes", t, func() {
|
|
nb := NewBernoulliNBClassifier()
|
|
|
|
Convey("PredictOne should panic if Fit was not called", func() {
|
|
testDoc := []float64{0.0, 1.0}
|
|
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
|
|
})
|
|
})
|
|
}
|
|
|
|
func TestSimple(t *testing.T) {
|
|
Convey("Given a simple training data", t, func() {
|
|
trainingData, err1 := base.ParseCSVToInstances("test/simple_train.csv", false)
|
|
if err1 != nil {
|
|
t.Error(err1)
|
|
}
|
|
|
|
nb := NewBernoulliNBClassifier()
|
|
nb.Fit(trainingData)
|
|
|
|
Convey("Check if Fit is working as expected", func() {
|
|
Convey("All data needed for prior should be correctly calculated", func() {
|
|
So(nb.classInstances["blue"], ShouldEqual, 2)
|
|
So(nb.classInstances["red"], ShouldEqual, 2)
|
|
So(nb.trainingInstances, ShouldEqual, 4)
|
|
})
|
|
|
|
Convey("'red' conditional probabilities should be correct", func() {
|
|
logCondProbTok0 := nb.condProb["red"][0]
|
|
logCondProbTok1 := nb.condProb["red"][1]
|
|
logCondProbTok2 := nb.condProb["red"][2]
|
|
|
|
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
|
|
So(logCondProbTok1, ShouldAlmostEqual, 1.0/3.0)
|
|
So(logCondProbTok2, ShouldAlmostEqual, 1.0)
|
|
})
|
|
|
|
Convey("'blue' conditional probabilities should be correct", func() {
|
|
logCondProbTok0 := nb.condProb["blue"][0]
|
|
logCondProbTok1 := nb.condProb["blue"][1]
|
|
logCondProbTok2 := nb.condProb["blue"][2]
|
|
|
|
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
|
|
So(logCondProbTok1, ShouldAlmostEqual, 1.0)
|
|
So(logCondProbTok2, ShouldAlmostEqual, 1.0/3.0)
|
|
})
|
|
})
|
|
|
|
Convey("PredictOne should work as expected", func() {
|
|
Convey("Using a document with different number of cols should panic", func() {
|
|
testDoc := []float64{0.0, 2.0}
|
|
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
|
|
})
|
|
|
|
Convey("Token 1 should be a good predictor of the blue class", func() {
|
|
testDoc := []float64{0.0, 123.0, 0.0}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
|
|
|
|
testDoc = []float64{120.0, 123.0, 0.0}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
|
|
})
|
|
|
|
Convey("Token 2 should be a good predictor of the red class", func() {
|
|
testDoc := []float64{0.0, 0.0, 120.0}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "red")
|
|
|
|
testDoc = []float64{10.0, 0.0, 120.0}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "red")
|
|
})
|
|
})
|
|
|
|
Convey("Predict should work as expected", func() {
|
|
testData, err := base.ParseCSVToInstances("test/simple_test.csv", false)
|
|
if err != nil {
|
|
t.Error(err)
|
|
}
|
|
predictions := nb.Predict(testData)
|
|
|
|
Convey("All simple predicitions should be correct", func() {
|
|
So(predictions.GetClass(0), ShouldEqual, "blue")
|
|
So(predictions.GetClass(1), ShouldEqual, "red")
|
|
So(predictions.GetClass(2), ShouldEqual, "blue")
|
|
So(predictions.GetClass(3), ShouldEqual, "red")
|
|
})
|
|
})
|
|
})
|
|
}
|