1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/neural/layered_test.go

215 lines
6.4 KiB
Go

package neural
import (
"github.com/gonum/matrix/mat64"
"github.com/sjwhitworth/golearn/base"
. "github.com/smartystreets/goconvey/convey"
"testing"
)
func TestLayerStructureNoHidden(t *testing.T) {
Convey("Creating a network...", t, func() {
XORData, err := base.ParseCSVToInstances("xor.csv", false)
So(err, ShouldEqual, nil)
Convey("Create a MultiLayerNet with no layers...", func() {
net := NewMultiLayerNet(make([]int, 0))
net.MaxIterations = 0
net.Fit(XORData)
Convey("The network should be the right size...", func() {
So(net.network.size, ShouldEqual, 3)
})
Convey("The right nodes should be connected in the network...", func() {
So(net.network.GetWeight(1, 1), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(2, 2), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(3, 3), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(1, 3), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(2, 3), ShouldNotAlmostEqual, 0.000)
})
})
Convey("Create a multilayer net with two hidden layers...", func() {
net := NewMultiLayerNet([]int{3, 2})
net.MaxIterations = 0
net.Fit(XORData)
Convey("The network should be the right size...", func() {
So(net.network.size, ShouldEqual, 8)
})
Convey("The right nodes should be connected in the network...", func() {
So(net.network.GetWeight(1, 1), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(2, 2), ShouldAlmostEqual, 1.000)
for i := 3; i <= 8; i++ {
So(net.network.GetWeight(i, i), ShouldAlmostEqual, 0.000)
}
for i := 1; i <= 2; i++ {
for j := 3; j <= 5; j++ {
So(net.network.GetWeight(i, j), ShouldNotAlmostEqual, 0.000)
}
}
for i := 3; i <= 5; i++ {
for j := 6; j <= 7; j++ {
So(net.network.GetWeight(i, j), ShouldNotAlmostEqual, 0.000)
}
}
for i := 6; i <= 7; i++ {
So(net.network.GetWeight(i, 8), ShouldNotAlmostEqual, 0.000)
}
for i := 8; i > 0; i-- {
for j := i - 1; j > 0; j-- {
So(net.network.GetWeight(i, j), ShouldAlmostEqual, 0.000)
}
}
})
})
Convey("Create a MultiLayerNet with 1 hidden layer...", func() {
net := NewMultiLayerNet([]int{3})
net.LearningRate = 0.9
net.MaxIterations = 0
net.Fit(XORData)
Convey("The network should be the right size...", func() {
So(net.network.size, ShouldEqual, 6)
})
Convey("The right nodes should be connected in the network...", func() {
So(net.network.GetWeight(1, 1), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(2, 2), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(1, 3), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(1, 4), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(1, 5), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(2, 3), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(2, 4), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(2, 5), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(3, 3), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(3, 4), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(3, 5), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(4, 4), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(4, 3), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(4, 5), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(5, 5), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(5, 3), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(5, 4), ShouldAlmostEqual, 0.000)
So(net.network.GetWeight(3, 6), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(4, 6), ShouldNotAlmostEqual, 0.000)
So(net.network.GetWeight(5, 6), ShouldNotAlmostEqual, 0.000)
for i := 1; i <= 6; i++ {
So(net.network.GetWeight(6, i), ShouldAlmostEqual, 0.000)
}
})
})
})
}
func TestLayeredXOR(t *testing.T) {
Convey("Given an XOR dataset...", t, func() {
XORData, err := base.ParseCSVToInstances("xor.csv", false)
So(err, ShouldEqual, nil)
net := NewMultiLayerNet([]int{3})
net.MaxIterations = 20000
net.Fit(XORData)
Convey("After running for 20000 iterations, should have some predictive power...", func() {
Convey("The right nodes should be connected in the network...", func() {
So(net.network.GetWeight(1, 1), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(2, 2), ShouldAlmostEqual, 1.000)
for i := 1; i <= 6; i++ {
So(net.network.GetWeight(6, i), ShouldAlmostEqual, 0.000)
}
})
out := mat64.NewDense(6, 1, []float64{1.0, 0.0, 0.0, 0.0, 0.0, 0.0})
net.network.Activate(out, 2)
So(out.At(5, 0), ShouldAlmostEqual, 1.0, 0.1)
Convey("And Predict() should do OK too...", func() {
pred := net.Predict(XORData)
for _, a := range pred.AllAttributes() {
af, ok := a.(*base.FloatAttribute)
So(ok, ShouldBeTrue)
af.Precision = 1
}
So(base.GetClass(pred, 0), ShouldEqual, "0.0")
So(base.GetClass(pred, 1), ShouldEqual, "1.0")
So(base.GetClass(pred, 2), ShouldEqual, "1.0")
So(base.GetClass(pred, 3), ShouldEqual, "0.0")
})
})
})
}
func TestLayeredXORInline(t *testing.T) {
Convey("Given an inline XOR dataset...", t, func() {
data := mat64.NewDense(4, 3, []float64{
1, 0, 1,
0, 1, 1,
0, 0, 0,
1, 1, 0,
})
XORData := base.InstancesFromMat64(4, 3, data)
classAttr := base.GetAttributeByName(XORData, "2")
XORData.AddClassAttribute(classAttr)
net := NewMultiLayerNet([]int{3})
net.MaxIterations = 20000
net.Fit(XORData)
Convey("After running for 20000 iterations, should have some predictive power...", func() {
Convey("The right nodes should be connected in the network...", func() {
So(net.network.GetWeight(1, 1), ShouldAlmostEqual, 1.000)
So(net.network.GetWeight(2, 2), ShouldAlmostEqual, 1.000)
for i := 1; i <= 6; i++ {
So(net.network.GetWeight(6, i), ShouldAlmostEqual, 0.000)
}
})
out := mat64.NewDense(6, 1, []float64{1.0, 0.0, 0.0, 0.0, 0.0, 0.0})
net.network.Activate(out, 2)
So(out.At(5, 0), ShouldAlmostEqual, 1.0, 0.1)
Convey("And Predict() should do OK too...", func() {
pred := net.Predict(XORData)
for _, a := range pred.AllAttributes() {
af, ok := a.(*base.FloatAttribute)
So(ok, ShouldBeTrue)
af.Precision = 1
}
So(base.GetClass(pred, 0), ShouldEqual, "1.0")
So(base.GetClass(pred, 1), ShouldEqual, "1.0")
So(base.GetClass(pred, 2), ShouldEqual, "0.0")
So(base.GetClass(pred, 3), ShouldEqual, "0.0")
})
})
})
}