1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/meta/bagging_test.go
2014-08-22 08:07:55 +00:00

90 lines
2.3 KiB
Go

package meta
import (
"github.com/sjwhitworth/golearn/base"
eval "github.com/sjwhitworth/golearn/evaluation"
"github.com/sjwhitworth/golearn/filters"
"github.com/sjwhitworth/golearn/trees"
"math/rand"
"testing"
"time"
)
func BenchmarkBaggingRandomForestFit(testEnv *testing.B) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
testEnv.Fatal("Unable to parse CSV to instances: %s", err.Error())
}
rand.Seed(time.Now().UnixNano())
filt := filters.NewChiMergeFilter(inst, 0.90)
for _, a := range base.NonClassFloatAttributes(inst) {
filt.AddAttribute(a)
}
filt.Train()
instf := base.NewLazilyFilteredInstances(inst, filt)
rf := new(BaggedModel)
for i := 0; i < 10; i++ {
rf.AddModel(trees.NewRandomTree(2))
}
testEnv.ResetTimer()
for i := 0; i < 20; i++ {
rf.Fit(instf)
}
}
func BenchmarkBaggingRandomForestPredict(testEnv *testing.B) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
testEnv.Fatal("Unable to parse CSV to instances: %s", err.Error())
}
rand.Seed(time.Now().UnixNano())
filt := filters.NewChiMergeFilter(inst, 0.90)
for _, a := range base.NonClassFloatAttributes(inst) {
filt.AddAttribute(a)
}
filt.Train()
instf := base.NewLazilyFilteredInstances(inst, filt)
rf := new(BaggedModel)
for i := 0; i < 10; i++ {
rf.AddModel(trees.NewRandomTree(2))
}
rf.Fit(instf)
testEnv.ResetTimer()
for i := 0; i < 20; i++ {
rf.Predict(instf)
}
}
func TestRandomForest1(testEnv *testing.T) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
testEnv.Fatal("Unable to parse CSV to instances: %s", err.Error())
}
trainData, testData := base.InstancesTrainTestSplit(inst, 0.6)
rand.Seed(time.Now().UnixNano())
filt := filters.NewChiMergeFilter(inst, 0.90)
for _, a := range base.NonClassFloatAttributes(inst) {
filt.AddAttribute(a)
}
filt.Train()
trainDataf := base.NewLazilyFilteredInstances(trainData, filt)
testDataf := base.NewLazilyFilteredInstances(testData, filt)
rf := new(BaggedModel)
for i := 0; i < 10; i++ {
rf.AddModel(trees.NewRandomTree(2))
}
rf.Fit(trainDataf)
predictions := rf.Predict(testDataf)
confusionMat := eval.GetConfusionMatrix(testDataf, predictions)
_ = eval.GetSummary(confusionMat)
}