1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-28 13:48:56 +08:00
golearn/pca/pca_test.go
Richard Townsend ff52c013eb Update gonum to latest version
Should fix #200 and #205
2018-03-24 00:19:35 +00:00

80 lines
2.8 KiB
Go

package pca
import (
"testing"
"gonum.org/v1/gonum/mat"
. "github.com/smartystreets/goconvey/convey"
)
func TestPCAWithZeroComponents(t *testing.T) {
Convey("Set to pca 0 components with first matrix", t, func() {
X1 := mat.NewDense(3, 7, []float64{6, 5, 4, 3, 8, 2, 9, 5, 1, 10, 2, 3, 8, 7, 5, 14, 2, 3, 6, 3, 2})
pca := NewPCA(0)
rows, cols := pca.FitTransform(X1).Dims()
So(rows, ShouldEqual, 3)
So(cols, ShouldEqual, 3)
})
Convey("Set to pca 0 components with second matrix", t, func() {
X1 := mat.NewDense(10, 5, []float64{
0.52984892, 0.1141001, 0.91599294, 0.9574267, 0.15361222,
0.07057588, 0.46371013, 0.73091854, 0.84641034, 0.08122213,
0.96221946, 0.60367214, 0.69851546, 0.91965564, 0.27040597,
0.03152856, 0.97912403, 0.39487038, 0.12232594, 0.18474705,
0.77061953, 0.35898551, 0.78684562, 0.11638404, 0.88908044,
0.35828086, 0.47214831, 0.95781755, 0.74762736, 0.59850757,
0.07806127, 0.96940955, 0.15751804, 0.00973325, 0.85041635,
0.02663938, 0.49755131, 0.57984119, 0.12233871, 0.47967853,
0.63903222, 0.88556565, 0.79797963, 0.13345186, 0.37415535,
0.60605207, 0.52067165, 0.91217494, 0.57148943, 0.92210331})
pca := NewPCA(0)
rows, cols := pca.FitTransform(X1).Dims()
So(rows, ShouldEqual, 10)
So(cols, ShouldEqual, 5)
})
}
func TestPCAWithNComponents(t *testing.T) {
Convey("Set to pca 3 components with 5x5 matrix", t, func() {
X := mat.NewDense(5, 5, []float64{
0.23030838, 0.05669317, 0.3187813, 0.34455114, 0.98062806,
0.38995469, 0.2996771, 0.99043575, 0.04443827, 0.99527955,
0.27266308, 0.14068906, 0.46999473, 0.03296131, 0.90855405,
0.28360708, 0.8839966, 0.81107014, 0.52673877, 0.59432817,
0.64107253, 0.56165215, 0.79811756, 0.48845398, 0.20506649})
pca := NewPCA(3)
rows, cols := pca.FitTransform(X).Dims()
So(rows, ShouldEqual, 5)
So(cols, ShouldEqual, 3)
})
Convey("Set to pca 2 components with 3x5 matrix", t, func() {
X := mat.NewDense(3, 5, []float64{
0.12294845, 0.55170713, 0.67572832, 0.60615516, 0.38184551,
0.93486821, 0.15120374, 0.89760169, 0.74715672, 0.81373931,
0.42821569, 0.47457753, 0.18960954, 0.42466159, 0.34166049})
pca := NewPCA(2)
rows, cols := pca.FitTransform(X).Dims()
So(rows, ShouldEqual, 3)
So(cols, ShouldEqual, 2)
})
}
func TestPCAFitAndTransformSeparately(t *testing.T) {
Convey("Set to pca 3 components with 5x5 matrix", t, func() {
X := mat.NewDense(5, 5, []float64{
0.23030838, 0.05669317, 0.3187813, 0.34455114, 0.98062806,
0.38995469, 0.2996771, 0.99043575, 0.04443827, 0.99527955,
0.27266308, 0.14068906, 0.46999473, 0.03296131, 0.90855405,
0.28360708, 0.8839966, 0.81107014, 0.52673877, 0.59432817,
0.64107253, 0.56165215, 0.79811756, 0.48845398, 0.20506649})
pca := NewPCA(3)
pca.Fit(X)
rows, cols := pca.Transform(X).Dims()
So(rows, ShouldEqual, 5)
So(cols, ShouldEqual, 3)
})
}