1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/kdtree/kdtree.go
Richard Townsend ff52c013eb Update gonum to latest version
Should fix #200 and #205
2018-03-24 00:19:35 +00:00

213 lines
5.2 KiB
Go

package kdtree
import (
"errors"
"gonum.org/v1/gonum/mat"
"github.com/sjwhitworth/golearn/metrics/pairwise"
"sort"
)
type node struct {
feature int
value []float64
srcRowNo int
left *node
right *node
}
// Tree is a kdtree.
type Tree struct {
firstDiv *node
data [][]float64
}
type SortData struct {
RowData [][]float64
Data []int
Feature int
}
func (d SortData) Len() int { return len(d.Data) }
func (d SortData) Less(i, j int) bool {
return d.RowData[d.Data[i]][d.Feature] < d.RowData[d.Data[j]][d.Feature]
}
func (d SortData) Swap(i, j int) { d.Data[i], d.Data[j] = d.Data[j], d.Data[i] }
// New return a Tree pointer.
func New() *Tree {
return &Tree{}
}
// Build builds the kdtree with specific data.
func (t *Tree) Build(data [][]float64) error {
if len(data) == 0 {
return errors.New("no input data")
}
size := len(data[0])
for _, v := range data {
if len(v) != size {
return errors.New("amounts of features are not the same")
}
}
t.data = data
newData := make([]int, len(data))
for k, _ := range newData {
newData[k] = k
}
if len(data) == 1 {
t.firstDiv = &node{feature: -1, srcRowNo: 0}
t.firstDiv.value = make([]float64, len(data[0]))
copy(t.firstDiv.value, data[0])
} else {
t.firstDiv = t.buildHandle(newData, 0)
}
return nil
}
// buildHandle builds the kdtree recursively.
func (t *Tree) buildHandle(data []int, featureIndex int) *node {
n := &node{feature: featureIndex}
tmp := SortData{RowData: t.data, Data: data, Feature: featureIndex}
sort.Sort(tmp)
middle := len(data) / 2
divPoint := middle
for i := middle + 1; i < len(data); i++ {
if t.data[data[i]][featureIndex] == t.data[data[middle]][featureIndex] {
divPoint = i
} else {
break
}
}
n.srcRowNo = data[divPoint]
n.value = make([]float64, len(t.data[data[divPoint]]))
copy(n.value, t.data[data[divPoint]])
if divPoint == 1 {
n.left = &node{feature: -1}
n.left.value = make([]float64, len(t.data[data[0]]))
copy(n.left.value, t.data[data[0]])
n.left.srcRowNo = data[0]
} else {
n.left = t.buildHandle(data[:divPoint], (featureIndex+1)%len(t.data[data[0]]))
}
if divPoint == (len(data) - 2) {
n.right = &node{feature: -1}
n.right.value = make([]float64, len(t.data[data[divPoint+1]]))
copy(n.right.value, t.data[data[divPoint+1]])
n.right.srcRowNo = data[divPoint+1]
} else if divPoint != (len(data) - 1) {
n.right = t.buildHandle(data[divPoint+1:], (featureIndex+1)%len(t.data[data[0]]))
} else {
n.right = &node{feature: -2}
}
return n
}
// Search return srcRowNo([]int) and length([]float64) contained
// k nearest neighbors from specific distance function.
func (t *Tree) Search(k int, disType pairwise.PairwiseDistanceFunc, target []float64) ([]int, []float64, error) {
if k > len(t.data) {
return []int{}, []float64{}, errors.New("k is largerer than amount of trainData")
}
if len(target) != len(t.data[0]) {
return []int{}, []float64{}, errors.New("amount of features is not equal")
}
h := newHeap()
t.searchHandle(k, disType, target, h, t.firstDiv)
srcRowNo := make([]int, k)
length := make([]float64, k)
i := k - 1
for h.size() != 0 {
srcRowNo[i] = h.maximum().srcRowNo
length[i] = h.maximum().length
i--
h.extractMax()
}
return srcRowNo, length, nil
}
func (t *Tree) searchHandle(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
if n.feature == -1 {
vectorX := mat.NewDense(len(target), 1, target)
vectorY := mat.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
h.insert(n.value, length, n.srcRowNo)
return
} else if n.feature == -2 {
return
}
dir := true
if target[n.feature] <= n.value[n.feature] {
t.searchHandle(k, disType, target, h, n.left)
} else {
dir = false
t.searchHandle(k, disType, target, h, n.right)
}
vectorX := mat.NewDense(len(target), 1, target)
vectorY := mat.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
if k > h.size() {
h.insert(n.value, length, n.srcRowNo)
if dir {
t.searchAllNodes(k, disType, target, h, n.right)
} else {
t.searchAllNodes(k, disType, target, h, n.left)
}
} else if h.maximum().length > length {
h.extractMax()
h.insert(n.value, length, n.srcRowNo)
if dir {
t.searchAllNodes(k, disType, target, h, n.right)
} else {
t.searchAllNodes(k, disType, target, h, n.left)
}
} else {
vectorX = mat.NewDense(1, 1, []float64{target[n.feature]})
vectorY = mat.NewDense(1, 1, []float64{n.value[n.feature]})
length = disType.Distance(vectorX, vectorY)
if h.maximum().length > length {
if dir {
t.searchAllNodes(k, disType, target, h, n.right)
} else {
t.searchAllNodes(k, disType, target, h, n.left)
}
}
}
}
func (t *Tree) searchAllNodes(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
vectorX := mat.NewDense(len(target), 1, target)
vectorY := mat.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
if k > h.size() {
h.insert(n.value, length, n.srcRowNo)
} else if h.maximum().length > length {
h.extractMax()
h.insert(n.value, length, n.srcRowNo)
}
if n.left != nil {
t.searchAllNodes(k, disType, target, h, n.left)
}
if n.right != nil {
t.searchAllNodes(k, disType, target, h, n.right)
}
}