mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00

Requires an additional step to install: - cd /tmp && - wget https://github.com/cjlin1/liblinear/archive/v241.tar.gz - tar xvf v241.tar.gz - cd liblinear-241 - make lib - sudo install -vm644 linear.h /usr/include - sudo install -vm755 liblinear.so.4 /usr/lib - sudo ln -sfv liblinear.so.4 /usr/lib/liblinear.so
87 lines
2.6 KiB
C
87 lines
2.6 KiB
C
#ifndef _LIBLINEAR_H
|
|
#define _LIBLINEAR_H
|
|
|
|
#define LIBLINEAR_VERSION 241
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
extern int liblinear_version;
|
|
|
|
struct feature_node
|
|
{
|
|
int index;
|
|
double value;
|
|
};
|
|
|
|
struct problem
|
|
{
|
|
int l, n;
|
|
double *y;
|
|
struct feature_node **x;
|
|
double bias; /* < 0 if no bias term */
|
|
};
|
|
|
|
enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL, ONECLASS_SVM = 21 }; /* solver_type */
|
|
|
|
struct parameter
|
|
{
|
|
int solver_type;
|
|
|
|
/* these are for training only */
|
|
double eps; /* stopping criteria */
|
|
double C;
|
|
int nr_weight;
|
|
int *weight_label;
|
|
double* weight;
|
|
double p;
|
|
double nu;
|
|
double *init_sol;
|
|
int regularize_bias;
|
|
};
|
|
|
|
struct model
|
|
{
|
|
struct parameter param;
|
|
int nr_class; /* number of classes */
|
|
int nr_feature;
|
|
double *w;
|
|
int *label; /* label of each class */
|
|
double bias;
|
|
double rho; /* one-class SVM only */
|
|
};
|
|
|
|
struct model* train(const struct problem *prob, const struct parameter *param);
|
|
void cross_validation(const struct problem *prob, const struct parameter *param, int nr_fold, double *target);
|
|
void find_parameters(const struct problem *prob, const struct parameter *param, int nr_fold, double start_C, double start_p, double *best_C, double *best_p, double *best_score);
|
|
|
|
double predict_values(const struct model *model_, const struct feature_node *x, double* dec_values);
|
|
double predict(const struct model *model_, const struct feature_node *x);
|
|
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
|
|
|
|
int save_model(const char *model_file_name, const struct model *model_);
|
|
struct model *load_model(const char *model_file_name);
|
|
|
|
int get_nr_feature(const struct model *model_);
|
|
int get_nr_class(const struct model *model_);
|
|
void get_labels(const struct model *model_, int* label);
|
|
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx);
|
|
double get_decfun_bias(const struct model *model_, int label_idx);
|
|
double get_decfun_rho(const struct model *model_);
|
|
|
|
void free_model_content(struct model *model_ptr);
|
|
void free_and_destroy_model(struct model **model_ptr_ptr);
|
|
void destroy_param(struct parameter *param);
|
|
|
|
const char *check_parameter(const struct problem *prob, const struct parameter *param);
|
|
int check_probability_model(const struct model *model);
|
|
int check_regression_model(const struct model *model);
|
|
int check_oneclass_model(const struct model *model);
|
|
void set_print_string_function(void (*print_func) (const char*));
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LIBLINEAR_H */ |