1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/knn/knn.go
2014-08-22 13:39:29 +00:00

200 lines
5.3 KiB
Go

// Package knn implements a K Nearest Neighbors object, capable of both classification
// and regression. It accepts data in the form of a slice of float64s, which are then reshaped
// into a X by Y matrix.
package knn
import (
"github.com/gonum/matrix/mat64"
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/metrics/pairwise"
"github.com/sjwhitworth/golearn/utilities"
)
// A KNNClassifier consists of a data matrix, associated labels in the same order as the matrix, and a distance function.
// The accepted distance functions at this time are 'euclidean' and 'manhattan'.
type KNNClassifier struct {
base.BaseEstimator
TrainingData base.FixedDataGrid
DistanceFunc string
NearestNeighbours int
}
// NewKnnClassifier returns a new classifier
func NewKnnClassifier(distfunc string, neighbours int) *KNNClassifier {
KNN := KNNClassifier{}
KNN.DistanceFunc = distfunc
KNN.NearestNeighbours = neighbours
return &KNN
}
// Fit stores the training data for later
func (KNN *KNNClassifier) Fit(trainingData base.FixedDataGrid) {
KNN.TrainingData = trainingData
}
// Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.
func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) base.FixedDataGrid {
// Check what distance function we are using
var distanceFunc pairwise.PairwiseDistanceFunc
switch KNN.DistanceFunc {
case "euclidean":
distanceFunc = pairwise.NewEuclidean()
case "manhattan":
distanceFunc = pairwise.NewManhattan()
default:
panic("unsupported distance function")
}
// Check compatability
allAttrs := base.CheckCompatable(what, KNN.TrainingData)
if allAttrs == nil {
// Don't have the same Attributes
return nil
}
// Remove the Attributes which aren't numeric
allNumericAttrs := make([]base.Attribute, 0)
for _, a := range allAttrs {
if fAttr, ok := a.(*base.FloatAttribute); ok {
allNumericAttrs = append(allNumericAttrs, fAttr)
}
}
// Generate return vector
ret := base.GeneratePredictionVector(what)
// Resolve Attribute specifications for both
whatAttrSpecs := base.ResolveAttributes(what, allNumericAttrs)
trainAttrSpecs := base.ResolveAttributes(KNN.TrainingData, allNumericAttrs)
// Reserve storage for most the most similar items
distances := make(map[int]float64)
// Reserve storage for voting map
maxmap := make(map[string]int)
// Reserve storage for row computations
trainRowBuf := make([]float64, len(allNumericAttrs))
predRowBuf := make([]float64, len(allNumericAttrs))
// Iterate over all outer rows
what.MapOverRows(whatAttrSpecs, func(predRow [][]byte, predRowNo int) (bool, error) {
// Read the float values out
for i, _ := range allNumericAttrs {
predRowBuf[i] = base.UnpackBytesToFloat(predRow[i])
}
predMat := utilities.FloatsToMatrix(predRowBuf)
// Find the closest match in the training data
KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {
// Read the float values out
for i, _ := range allNumericAttrs {
trainRowBuf[i] = base.UnpackBytesToFloat(trainRow[i])
}
// Compute the distance
trainMat := utilities.FloatsToMatrix(trainRowBuf)
distances[srcRowNo] = distanceFunc.Distance(predMat, trainMat)
return true, nil
})
sorted := utilities.SortIntMap(distances)
values := sorted[:KNN.NearestNeighbours]
// Reset maxMap
for a := range maxmap {
maxmap[a] = 0
}
// Refresh maxMap
for _, elem := range values {
label := base.GetClass(KNN.TrainingData, elem)
if _, ok := maxmap[label]; ok {
maxmap[label]++
} else {
maxmap[label] = 1
}
}
// Sort the maxMap
var maxClass string
maxVal := -1
for a := range maxmap {
if maxmap[a] > maxVal {
maxVal = maxmap[a]
maxClass = a
}
}
base.SetClass(ret, predRowNo, maxClass)
return true, nil
})
return ret
}
// A KNNRegressor consists of a data matrix, associated result variables in the same order as the matrix, and a name.
type KNNRegressor struct {
base.BaseEstimator
Values []float64
DistanceFunc string
}
// NewKnnRegressor mints a new classifier.
func NewKnnRegressor(distfunc string) *KNNRegressor {
KNN := KNNRegressor{}
KNN.DistanceFunc = distfunc
return &KNN
}
func (KNN *KNNRegressor) Fit(values []float64, numbers []float64, rows int, cols int) {
if rows != len(values) {
panic(mat64.ErrShape)
}
KNN.Data = mat64.NewDense(rows, cols, numbers)
KNN.Values = values
}
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {
// Get the number of rows
rows, _ := KNN.Data.Dims()
rownumbers := make(map[int]float64)
labels := make([]float64, 0)
// Check what distance function we are using
var distanceFunc pairwise.PairwiseDistanceFunc
switch KNN.DistanceFunc {
case "euclidean":
distanceFunc = pairwise.NewEuclidean()
case "manhattan":
distanceFunc = pairwise.NewManhattan()
default:
panic("unsupported distance function")
}
for i := 0; i < rows; i++ {
row := KNN.Data.RowView(i)
rowMat := utilities.FloatsToMatrix(row)
distance := distanceFunc.Distance(rowMat, vector)
rownumbers[i] = distance
}
sorted := utilities.SortIntMap(rownumbers)
values := sorted[:K]
var sum float64
for _, elem := range values {
value := KNN.Values[elem]
labels = append(labels, value)
sum += value
}
average := sum / float64(K)
return average
}