mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00
200 lines
5.3 KiB
Go
200 lines
5.3 KiB
Go
// Package knn implements a K Nearest Neighbors object, capable of both classification
|
|
// and regression. It accepts data in the form of a slice of float64s, which are then reshaped
|
|
// into a X by Y matrix.
|
|
package knn
|
|
|
|
import (
|
|
"github.com/gonum/matrix/mat64"
|
|
"github.com/sjwhitworth/golearn/base"
|
|
"github.com/sjwhitworth/golearn/metrics/pairwise"
|
|
"github.com/sjwhitworth/golearn/utilities"
|
|
)
|
|
|
|
// A KNNClassifier consists of a data matrix, associated labels in the same order as the matrix, and a distance function.
|
|
// The accepted distance functions at this time are 'euclidean' and 'manhattan'.
|
|
type KNNClassifier struct {
|
|
base.BaseEstimator
|
|
TrainingData base.FixedDataGrid
|
|
DistanceFunc string
|
|
NearestNeighbours int
|
|
}
|
|
|
|
// NewKnnClassifier returns a new classifier
|
|
func NewKnnClassifier(distfunc string, neighbours int) *KNNClassifier {
|
|
KNN := KNNClassifier{}
|
|
KNN.DistanceFunc = distfunc
|
|
KNN.NearestNeighbours = neighbours
|
|
return &KNN
|
|
}
|
|
|
|
// Fit stores the training data for later
|
|
func (KNN *KNNClassifier) Fit(trainingData base.FixedDataGrid) {
|
|
KNN.TrainingData = trainingData
|
|
}
|
|
|
|
// Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.
|
|
func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) base.FixedDataGrid {
|
|
|
|
// Check what distance function we are using
|
|
var distanceFunc pairwise.PairwiseDistanceFunc
|
|
switch KNN.DistanceFunc {
|
|
case "euclidean":
|
|
distanceFunc = pairwise.NewEuclidean()
|
|
case "manhattan":
|
|
distanceFunc = pairwise.NewManhattan()
|
|
default:
|
|
panic("unsupported distance function")
|
|
|
|
}
|
|
// Check compatability
|
|
allAttrs := base.CheckCompatable(what, KNN.TrainingData)
|
|
if allAttrs == nil {
|
|
// Don't have the same Attributes
|
|
return nil
|
|
}
|
|
|
|
// Remove the Attributes which aren't numeric
|
|
allNumericAttrs := make([]base.Attribute, 0)
|
|
for _, a := range allAttrs {
|
|
if fAttr, ok := a.(*base.FloatAttribute); ok {
|
|
allNumericAttrs = append(allNumericAttrs, fAttr)
|
|
}
|
|
}
|
|
|
|
// Generate return vector
|
|
ret := base.GeneratePredictionVector(what)
|
|
|
|
// Resolve Attribute specifications for both
|
|
whatAttrSpecs := base.ResolveAttributes(what, allNumericAttrs)
|
|
trainAttrSpecs := base.ResolveAttributes(KNN.TrainingData, allNumericAttrs)
|
|
|
|
// Reserve storage for most the most similar items
|
|
distances := make(map[int]float64)
|
|
|
|
// Reserve storage for voting map
|
|
maxmap := make(map[string]int)
|
|
|
|
// Reserve storage for row computations
|
|
trainRowBuf := make([]float64, len(allNumericAttrs))
|
|
predRowBuf := make([]float64, len(allNumericAttrs))
|
|
|
|
// Iterate over all outer rows
|
|
what.MapOverRows(whatAttrSpecs, func(predRow [][]byte, predRowNo int) (bool, error) {
|
|
// Read the float values out
|
|
for i, _ := range allNumericAttrs {
|
|
predRowBuf[i] = base.UnpackBytesToFloat(predRow[i])
|
|
}
|
|
|
|
predMat := utilities.FloatsToMatrix(predRowBuf)
|
|
|
|
// Find the closest match in the training data
|
|
KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {
|
|
|
|
// Read the float values out
|
|
for i, _ := range allNumericAttrs {
|
|
trainRowBuf[i] = base.UnpackBytesToFloat(trainRow[i])
|
|
}
|
|
|
|
// Compute the distance
|
|
trainMat := utilities.FloatsToMatrix(trainRowBuf)
|
|
distances[srcRowNo] = distanceFunc.Distance(predMat, trainMat)
|
|
return true, nil
|
|
})
|
|
|
|
sorted := utilities.SortIntMap(distances)
|
|
values := sorted[:KNN.NearestNeighbours]
|
|
|
|
// Reset maxMap
|
|
for a := range maxmap {
|
|
maxmap[a] = 0
|
|
}
|
|
|
|
// Refresh maxMap
|
|
for _, elem := range values {
|
|
label := base.GetClass(KNN.TrainingData, elem)
|
|
if _, ok := maxmap[label]; ok {
|
|
maxmap[label]++
|
|
} else {
|
|
maxmap[label] = 1
|
|
}
|
|
}
|
|
|
|
// Sort the maxMap
|
|
var maxClass string
|
|
maxVal := -1
|
|
for a := range maxmap {
|
|
if maxmap[a] > maxVal {
|
|
maxVal = maxmap[a]
|
|
maxClass = a
|
|
}
|
|
}
|
|
|
|
base.SetClass(ret, predRowNo, maxClass)
|
|
return true, nil
|
|
|
|
})
|
|
|
|
return ret
|
|
}
|
|
|
|
// A KNNRegressor consists of a data matrix, associated result variables in the same order as the matrix, and a name.
|
|
type KNNRegressor struct {
|
|
base.BaseEstimator
|
|
Values []float64
|
|
DistanceFunc string
|
|
}
|
|
|
|
// NewKnnRegressor mints a new classifier.
|
|
func NewKnnRegressor(distfunc string) *KNNRegressor {
|
|
KNN := KNNRegressor{}
|
|
KNN.DistanceFunc = distfunc
|
|
return &KNN
|
|
}
|
|
|
|
func (KNN *KNNRegressor) Fit(values []float64, numbers []float64, rows int, cols int) {
|
|
if rows != len(values) {
|
|
panic(mat64.ErrShape)
|
|
}
|
|
|
|
KNN.Data = mat64.NewDense(rows, cols, numbers)
|
|
KNN.Values = values
|
|
}
|
|
|
|
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {
|
|
// Get the number of rows
|
|
rows, _ := KNN.Data.Dims()
|
|
rownumbers := make(map[int]float64)
|
|
labels := make([]float64, 0)
|
|
|
|
// Check what distance function we are using
|
|
var distanceFunc pairwise.PairwiseDistanceFunc
|
|
switch KNN.DistanceFunc {
|
|
case "euclidean":
|
|
distanceFunc = pairwise.NewEuclidean()
|
|
case "manhattan":
|
|
distanceFunc = pairwise.NewManhattan()
|
|
default:
|
|
panic("unsupported distance function")
|
|
}
|
|
|
|
for i := 0; i < rows; i++ {
|
|
row := KNN.Data.RowView(i)
|
|
rowMat := utilities.FloatsToMatrix(row)
|
|
distance := distanceFunc.Distance(rowMat, vector)
|
|
rownumbers[i] = distance
|
|
}
|
|
|
|
sorted := utilities.SortIntMap(rownumbers)
|
|
values := sorted[:K]
|
|
|
|
var sum float64
|
|
for _, elem := range values {
|
|
value := KNN.Values[elem]
|
|
labels = append(labels, value)
|
|
sum += value
|
|
}
|
|
|
|
average := sum / float64(K)
|
|
return average
|
|
}
|