mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-30 13:48:57 +08:00
84 lines
2.0 KiB
Go
84 lines
2.0 KiB
Go
//Implementation of Principal Component Analysis(PCA) with SVD
|
|
package pca
|
|
|
|
import (
|
|
"github.com/gonum/matrix"
|
|
"github.com/gonum/matrix/mat64"
|
|
)
|
|
|
|
type PCA struct {
|
|
Num_components int
|
|
}
|
|
|
|
// Number of components. 0 - by default, use number of features as number of components
|
|
func NewPCA(num_components int) *PCA {
|
|
return &PCA{Num_components: num_components}
|
|
}
|
|
|
|
//Need return is base.FixedDataGrid
|
|
func (pca *PCA) Transform(X *mat64.Dense) *mat64.Dense {
|
|
//Prepare before PCA
|
|
|
|
num_samples, num_features := X.Dims()
|
|
//Mean to input data
|
|
M := mean(X)
|
|
X = matrixSubVector(X, M)
|
|
|
|
//Get SVD decomposition from data
|
|
var svd mat64.SVD
|
|
ok := svd.Factorize(X, matrix.SVDThin)
|
|
if !ok {
|
|
panic("Unable to factorize")
|
|
}
|
|
if pca.Num_components < 0 {
|
|
panic("Number of components can't be less than zero")
|
|
}
|
|
|
|
vTemp := new(mat64.Dense)
|
|
vTemp.VFromSVD(&svd)
|
|
//Compute to full data
|
|
if pca.Num_components == 0 || pca.Num_components > num_features {
|
|
return compute(X, vTemp)
|
|
}
|
|
|
|
X = compute(X, vTemp)
|
|
result := mat64.NewDense(num_samples, pca.Num_components, nil)
|
|
result.Copy(X.View(0, 0, num_samples, pca.Num_components))
|
|
return result
|
|
}
|
|
|
|
//Helpful private functions
|
|
|
|
//Compute mean of the columns of input matrix
|
|
func mean(matrix *mat64.Dense) *mat64.Dense {
|
|
rows, cols := matrix.Dims()
|
|
meanVector := make([]float64, cols)
|
|
for i := 0; i < cols; i++ {
|
|
sum := mat64.Sum(matrix.ColView(i))
|
|
meanVector[i] = sum / float64(rows)
|
|
}
|
|
return mat64.NewDense(1, cols, meanVector)
|
|
}
|
|
|
|
// After computing of mean, compute: X(input matrix) - X(mean vector)
|
|
func matrixSubVector(mat, vec *mat64.Dense) *mat64.Dense {
|
|
rowsm, colsm := mat.Dims()
|
|
_, colsv := vec.Dims()
|
|
if colsv != colsm {
|
|
panic("Error in dimension")
|
|
}
|
|
for i := 0; i < rowsm; i++ {
|
|
for j := 0; j < colsm; j++ {
|
|
mat.Set(i, j, (mat.At(i, j) - vec.At(0, j)))
|
|
}
|
|
}
|
|
return mat
|
|
}
|
|
|
|
//Multiplication of X(input data) and V(from SVD)
|
|
func compute(X, Y mat64.Matrix) *mat64.Dense {
|
|
var ret mat64.Dense
|
|
ret.Mul(X, Y)
|
|
return &ret
|
|
}
|