1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/knn/knn.go
2014-07-18 13:25:18 +03:00

165 lines
4.3 KiB
Go

// Package KNN implements a K Nearest Neighbors object, capable of both classification
// and regression. It accepts data in the form of a slice of float64s, which are then reshaped
// into a X by Y matrix.
package knn
import (
"github.com/gonum/matrix/mat64"
base "github.com/sjwhitworth/golearn/base"
pairwiseMetrics "github.com/sjwhitworth/golearn/metrics/pairwise"
util "github.com/sjwhitworth/golearn/utilities"
)
// A KNN Classifier. Consists of a data matrix, associated labels in the same order as the matrix, and a distance function.
// The accepted distance functions at this time are 'euclidean' and 'manhattan'.
type KNNClassifier struct {
base.BaseEstimator
TrainingData *base.Instances
DistanceFunc string
NearestNeighbours int
}
// Returns a new classifier
func NewKnnClassifier(distfunc string, neighbours int) *KNNClassifier {
KNN := KNNClassifier{}
KNN.DistanceFunc = distfunc
KNN.NearestNeighbours = neighbours
return &KNN
}
// Train stores the training data for llater
func (KNN *KNNClassifier) Fit(trainingData *base.Instances) {
KNN.TrainingData = trainingData
}
// Returns a classification for the vector, based on a vector input, using the KNN algorithm.
// See http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.
func (KNN *KNNClassifier) PredictOne(vector []float64) string {
rows := KNN.TrainingData.Rows
rownumbers := make(map[int]float64)
labels := make([]string, 0)
maxmap := make(map[string]int)
convertedVector := util.FloatsToMatrix(vector)
// Check what distance function we are using
switch KNN.DistanceFunc {
case "euclidean":
{
euclidean := pairwiseMetrics.NewEuclidean()
for i := 0; i < rows; i++ {
row := KNN.TrainingData.GetRowVectorWithoutClass(i)
rowMat := util.FloatsToMatrix(row)
distance := euclidean.Distance(rowMat, convertedVector)
rownumbers[i] = distance
}
}
case "manhattan":
{
manhattan := pairwiseMetrics.NewEuclidean()
for i := 0; i < rows; i++ {
row := KNN.TrainingData.GetRowVectorWithoutClass(i)
rowMat := util.FloatsToMatrix(row)
distance := manhattan.Distance(rowMat, convertedVector)
rownumbers[i] = distance
}
}
}
sorted := util.SortIntMap(rownumbers)
values := sorted[:KNN.NearestNeighbours]
for _, elem := range values {
label := KNN.TrainingData.GetClass(elem)
labels = append(labels, label)
if _, ok := maxmap[label]; ok {
maxmap[label]++
} else {
maxmap[label] = 1
}
}
sortedlabels := util.SortStringMap(maxmap)
label := sortedlabels[0]
return label
}
func (KNN *KNNClassifier) Predict(what *base.Instances) *base.Instances {
ret := what.GeneratePredictionVector()
for i := 0; i < what.Rows; i++ {
ret.SetAttrStr(i, 0, KNN.PredictOne(what.GetRowVectorWithoutClass(i)))
}
return ret
}
//A KNN Regressor. Consists of a data matrix, associated result variables in the same order as the matrix, and a name.
type KNNRegressor struct {
base.BaseEstimator
Values []float64
DistanceFunc string
}
// Mints a new classifier.
func NewKnnRegressor(distfunc string) *KNNRegressor {
KNN := KNNRegressor{}
KNN.DistanceFunc = distfunc
return &KNN
}
func (KNN *KNNRegressor) Fit(values []float64, numbers []float64, rows int, cols int) {
if rows != len(values) {
panic(mat64.ErrShape)
}
KNN.Data = mat64.NewDense(rows, cols, numbers)
KNN.Values = values
}
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {
// Get the number of rows
rows, _ := KNN.Data.Dims()
rownumbers := make(map[int]float64)
labels := make([]float64, 0)
// Check what distance function we are using
switch KNN.DistanceFunc {
case "euclidean":
{
euclidean := pairwiseMetrics.NewEuclidean()
for i := 0; i < rows; i++ {
row := KNN.Data.RowView(i)
rowMat := util.FloatsToMatrix(row)
distance := euclidean.Distance(rowMat, vector)
rownumbers[i] = distance
}
}
case "manhattan":
{
manhattan := pairwiseMetrics.NewEuclidean()
for i := 0; i < rows; i++ {
row := KNN.Data.RowView(i)
rowMat := util.FloatsToMatrix(row)
distance := manhattan.Distance(rowMat, vector)
rownumbers[i] = distance
}
}
}
sorted := util.SortIntMap(rownumbers)
values := sorted[:K]
var sum float64
for _, elem := range values {
value := KNN.Values[elem]
labels = append(labels, value)
sum += value
}
average := sum / float64(K)
return average
}