mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-28 13:48:56 +08:00
381 lines
9.7 KiB
Go
381 lines
9.7 KiB
Go
package filters
|
|
|
|
import (
|
|
"fmt"
|
|
base "github.com/sjwhitworth/golearn/base"
|
|
"math"
|
|
)
|
|
|
|
// ChiMergeFilter implements supervised discretisation
|
|
// by merging successive numeric intervals if the difference
|
|
// in their class distribution is not statistically signficant.
|
|
// See Bramer, "Principles of Data Mining", 2nd Edition
|
|
// pp 105--115
|
|
type ChiMergeFilter struct {
|
|
Attributes []int
|
|
Instances *base.Instances
|
|
Tables map[int][]*FrequencyTableEntry
|
|
Significance float64
|
|
MinRows int
|
|
MaxRows int
|
|
_Trained bool
|
|
}
|
|
|
|
// Create a ChiMergeFilter with some helpful intialisations.
|
|
func NewChiMergeFilter(inst *base.Instances, significance float64) ChiMergeFilter {
|
|
return ChiMergeFilter{
|
|
make([]int, 0),
|
|
inst,
|
|
make(map[int][]*FrequencyTableEntry),
|
|
significance,
|
|
0,
|
|
0,
|
|
false,
|
|
}
|
|
}
|
|
|
|
// Build trains a ChiMergeFilter on the ChiMergeFilter.Instances given
|
|
func (c *ChiMergeFilter) Build() {
|
|
for _, attr := range c.Attributes {
|
|
tab := chiMerge(c.Instances, attr, c.Significance, c.MinRows, c.MaxRows)
|
|
c.Tables[attr] = tab
|
|
c._Trained = true
|
|
}
|
|
}
|
|
|
|
// AddAllNumericAttributes adds every suitable attribute
|
|
// to the ChiMergeFilter for discretisation
|
|
func (b *ChiMergeFilter) AddAllNumericAttributes() {
|
|
for i := 0; i < b.Instances.Cols; i++ {
|
|
if i == b.Instances.ClassIndex {
|
|
continue
|
|
}
|
|
attr := b.Instances.GetAttr(i)
|
|
if attr.GetType() != base.Float64Type {
|
|
continue
|
|
}
|
|
b.Attributes = append(b.Attributes, i)
|
|
}
|
|
}
|
|
|
|
// Run discretises the set of Instances `on'
|
|
//
|
|
// IMPORTANT: ChiMergeFilter discretises in place.
|
|
func (c *ChiMergeFilter) Run(on *base.Instances) {
|
|
if !c._Trained {
|
|
panic("Call Build() beforehand")
|
|
}
|
|
for attr := range c.Tables {
|
|
table := c.Tables[attr]
|
|
for i := 0; i < on.Rows; i++ {
|
|
val := on.Get(i, attr)
|
|
dis := 0
|
|
for j, k := range table {
|
|
if k.Value < val {
|
|
dis = j
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
on.Set(i, attr, float64(dis))
|
|
}
|
|
newAttribute := new(base.CategoricalAttribute)
|
|
newAttribute.SetName(on.GetAttr(attr).GetName())
|
|
for _, k := range table {
|
|
newAttribute.GetSysValFromString(fmt.Sprintf("%f", k.Value))
|
|
}
|
|
on.ReplaceAttr(attr, newAttribute)
|
|
}
|
|
}
|
|
|
|
// AddAttribute add a given numeric Attribute `attr' to the
|
|
// filter.
|
|
//
|
|
// IMPORTANT: This function panic()s if it can't locate the
|
|
// attribute in the Instances set.
|
|
func (c *ChiMergeFilter) AddAttribute(attr base.Attribute) {
|
|
if attr.GetType() != base.Float64Type {
|
|
panic("ChiMerge only works on Float64Attributes")
|
|
}
|
|
attrIndex := c.Instances.GetAttrIndex(attr)
|
|
if attrIndex == -1 {
|
|
panic("Invalid attribute!")
|
|
}
|
|
c.Attributes = append(c.Attributes, attrIndex)
|
|
}
|
|
|
|
type FrequencyTableEntry struct {
|
|
Value float64
|
|
Frequency map[string]int
|
|
}
|
|
|
|
func (t *FrequencyTableEntry) String() string {
|
|
return fmt.Sprintf("%.2f %s", t.Value, t.Frequency)
|
|
}
|
|
|
|
func ChiMBuildFrequencyTable(attr int, inst *base.Instances) []*FrequencyTableEntry {
|
|
ret := make([]*FrequencyTableEntry, 0)
|
|
var attribute *base.FloatAttribute
|
|
attribute, ok := inst.GetAttr(attr).(*base.FloatAttribute)
|
|
if !ok {
|
|
panic("only use Chi-M on numeric stuff")
|
|
}
|
|
for i := 0; i < inst.Rows; i++ {
|
|
value := inst.Get(i, attr)
|
|
valueConv := attribute.GetUsrVal(value)
|
|
class := inst.GetClass(i)
|
|
// Search the frequency table for the value
|
|
found := false
|
|
for _, entry := range ret {
|
|
if entry.Value == valueConv {
|
|
found = true
|
|
entry.Frequency[class]++
|
|
}
|
|
}
|
|
if !found {
|
|
newEntry := &FrequencyTableEntry{
|
|
valueConv,
|
|
make(map[string]int),
|
|
}
|
|
newEntry.Frequency[class] = 1
|
|
ret = append(ret, newEntry)
|
|
}
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
func chiSquaredPdf(k float64, x float64) float64 {
|
|
if x < 0 {
|
|
return 0
|
|
}
|
|
top := math.Pow(x, (k/2)-1) * math.Exp(-x/2)
|
|
bottom := math.Pow(2, k/2) * math.Gamma(k/2)
|
|
return top / bottom
|
|
}
|
|
|
|
func chiSquaredPercentile(k int, x float64) float64 {
|
|
// Implements Yahya et al.'s "A Numerical Procedure
|
|
// for Computing Chi-Square Percentage Points"
|
|
// InterStat Journal 01/2007; April 25:page:1-8.
|
|
steps := 32
|
|
intervals := 4 * steps
|
|
w := x / (4.0 * float64(steps))
|
|
values := make([]float64, intervals+1)
|
|
for i := 0; i < intervals+1; i++ {
|
|
c := w * float64(i)
|
|
v := chiSquaredPdf(float64(k), c)
|
|
values[i] = v
|
|
}
|
|
|
|
ret1 := values[0] + values[len(values)-1]
|
|
ret2 := 0.0
|
|
ret3 := 0.0
|
|
ret4 := 0.0
|
|
|
|
for i := 2; i < intervals-1; i += 4 {
|
|
ret2 += values[i]
|
|
}
|
|
|
|
for i := 4; i < intervals-3; i += 4 {
|
|
ret3 += values[i]
|
|
}
|
|
|
|
for i := 1; i < intervals; i += 2 {
|
|
ret4 += values[i]
|
|
}
|
|
|
|
return (2.0 * w / 45) * (7*ret1 + 12*ret2 + 14*ret3 + 32*ret4)
|
|
}
|
|
|
|
func chiCountClasses(entries []*FrequencyTableEntry) map[string]int {
|
|
classCounter := make(map[string]int)
|
|
for _, e := range entries {
|
|
for k := range e.Frequency {
|
|
classCounter[k] += e.Frequency[k]
|
|
}
|
|
}
|
|
return classCounter
|
|
}
|
|
|
|
func chiComputeStatistic(entry1 *FrequencyTableEntry, entry2 *FrequencyTableEntry) float64 {
|
|
|
|
// Sum the number of things observed per class
|
|
classCounter := make(map[string]int)
|
|
for k := range entry1.Frequency {
|
|
classCounter[k] += entry1.Frequency[k]
|
|
}
|
|
for k := range entry2.Frequency {
|
|
classCounter[k] += entry2.Frequency[k]
|
|
}
|
|
|
|
// Sum the number of things observed per value
|
|
entryObservations1 := 0
|
|
entryObservations2 := 0
|
|
for k := range entry1.Frequency {
|
|
entryObservations1 += entry1.Frequency[k]
|
|
}
|
|
for k := range entry2.Frequency {
|
|
entryObservations2 += entry2.Frequency[k]
|
|
}
|
|
|
|
totalObservations := entryObservations1 + entryObservations2
|
|
// Compute the expected values per class
|
|
expectedClassValues1 := make(map[string]float64)
|
|
expectedClassValues2 := make(map[string]float64)
|
|
for k := range classCounter {
|
|
expectedClassValues1[k] = float64(classCounter[k])
|
|
expectedClassValues1[k] *= float64(entryObservations1)
|
|
expectedClassValues1[k] /= float64(totalObservations)
|
|
}
|
|
for k := range classCounter {
|
|
expectedClassValues2[k] = float64(classCounter[k])
|
|
expectedClassValues2[k] *= float64(entryObservations2)
|
|
expectedClassValues2[k] /= float64(totalObservations)
|
|
}
|
|
|
|
// Compute chi-squared value
|
|
chiSum := 0.0
|
|
for k := range expectedClassValues1 {
|
|
numerator := float64(entry1.Frequency[k])
|
|
numerator -= expectedClassValues1[k]
|
|
numerator = math.Pow(numerator, 2)
|
|
denominator := float64(expectedClassValues1[k])
|
|
if denominator < 0.5 {
|
|
denominator = 0.5
|
|
}
|
|
chiSum += numerator / denominator
|
|
}
|
|
for k := range expectedClassValues2 {
|
|
numerator := float64(entry2.Frequency[k])
|
|
numerator -= expectedClassValues2[k]
|
|
numerator = math.Pow(numerator, 2)
|
|
denominator := float64(expectedClassValues2[k])
|
|
if denominator < 0.5 {
|
|
denominator = 0.5
|
|
}
|
|
chiSum += numerator / denominator
|
|
}
|
|
|
|
return chiSum
|
|
}
|
|
|
|
func chiMergeMergeZipAdjacent(freq []*FrequencyTableEntry, minIndex int) []*FrequencyTableEntry {
|
|
mergeEntry1 := freq[minIndex]
|
|
mergeEntry2 := freq[minIndex+1]
|
|
classCounter := make(map[string]int)
|
|
for k := range mergeEntry1.Frequency {
|
|
classCounter[k] += mergeEntry1.Frequency[k]
|
|
}
|
|
for k := range mergeEntry2.Frequency {
|
|
classCounter[k] += mergeEntry2.Frequency[k]
|
|
}
|
|
newVal := freq[minIndex].Value
|
|
newEntry := &FrequencyTableEntry{
|
|
newVal,
|
|
classCounter,
|
|
}
|
|
lowerSlice := freq
|
|
upperSlice := freq
|
|
if minIndex > 0 {
|
|
lowerSlice = freq[0:minIndex]
|
|
upperSlice = freq[minIndex+1:]
|
|
} else {
|
|
lowerSlice = make([]*FrequencyTableEntry, 0)
|
|
upperSlice = freq[1:]
|
|
}
|
|
upperSlice[0] = newEntry
|
|
freq = append(lowerSlice, upperSlice...)
|
|
return freq
|
|
}
|
|
|
|
func chiMergePrintTable(freq []*FrequencyTableEntry) {
|
|
classes := chiCountClasses(freq)
|
|
fmt.Printf("Attribute value\t")
|
|
for k := range classes {
|
|
fmt.Printf("\t%s", k)
|
|
}
|
|
fmt.Printf("\tTotal\n")
|
|
for _, f := range freq {
|
|
fmt.Printf("%.2f\t", f.Value)
|
|
total := 0
|
|
for k := range classes {
|
|
fmt.Printf("\t%d", f.Frequency[k])
|
|
total += f.Frequency[k]
|
|
}
|
|
fmt.Printf("\t%d\n", total)
|
|
}
|
|
}
|
|
|
|
// Produces a value mapping table
|
|
// inst: The base.Instances which need discretising
|
|
// sig: The significance level (e.g. 0.95)
|
|
// minrows: The minimum number of rows required in the frequency table
|
|
// maxrows: The maximum number of rows allowed in the frequency table
|
|
// If the number of rows is above this, statistically signficant
|
|
// adjacent rows will be merged
|
|
// precision: internal number of decimal places to round E value to
|
|
// (useful for verification)
|
|
func chiMerge(inst *base.Instances, attr int, sig float64, minrows int, maxrows int) []*FrequencyTableEntry {
|
|
|
|
// Parameter sanity checking
|
|
if !(2 <= minrows) {
|
|
minrows = 2
|
|
}
|
|
if !(minrows < maxrows) {
|
|
maxrows = minrows + 1
|
|
}
|
|
if sig == 0 {
|
|
sig = 10
|
|
}
|
|
|
|
// Build a frequency table
|
|
freq := ChiMBuildFrequencyTable(attr, inst)
|
|
// Count the number of classes
|
|
classes := chiCountClasses(freq)
|
|
for {
|
|
// chiMergePrintTable(freq) DEBUG
|
|
if len(freq) <= minrows {
|
|
break
|
|
}
|
|
minChiVal := math.Inf(1)
|
|
// There may be more than one index to merge
|
|
minChiIndexes := make([]int, 0)
|
|
for i := 0; i < len(freq)-1; i++ {
|
|
chiVal := chiComputeStatistic(freq[i], freq[i+1])
|
|
if chiVal < minChiVal {
|
|
minChiVal = chiVal
|
|
minChiIndexes = make([]int, 0)
|
|
}
|
|
if chiVal == minChiVal {
|
|
minChiIndexes = append(minChiIndexes, i)
|
|
}
|
|
}
|
|
// Only merge if:
|
|
// We're above the maximum number of rows
|
|
// OR the chiVal is significant
|
|
// AS LONG AS we're above the minimum row count
|
|
merge := false
|
|
if len(freq) > maxrows {
|
|
merge = true
|
|
}
|
|
// Compute the degress of freedom |classes - 1| * |rows - 1|
|
|
degsOfFree := len(classes) - 1
|
|
sigVal := chiSquaredPercentile(degsOfFree, minChiVal)
|
|
if sigVal < sig {
|
|
merge = true
|
|
}
|
|
// If we don't need to merge, then break
|
|
if !merge {
|
|
break
|
|
}
|
|
// Otherwise merge the rows i, i+1 by taking
|
|
// The higher of the two things as the value
|
|
// Combining the class frequencies
|
|
for i, v := range minChiIndexes {
|
|
freq = chiMergeMergeZipAdjacent(freq, v-i)
|
|
}
|
|
}
|
|
return freq
|
|
}
|