mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00
143 lines
4.5 KiB
Go
143 lines
4.5 KiB
Go
package naive
|
|
|
|
import (
|
|
"github.com/sjwhitworth/golearn/base"
|
|
"github.com/sjwhitworth/golearn/filters"
|
|
. "github.com/smartystreets/goconvey/convey"
|
|
"io/ioutil"
|
|
"os"
|
|
"testing"
|
|
)
|
|
|
|
func TestNoFit(t *testing.T) {
|
|
Convey("Given an empty BernoulliNaiveBayes", t, func() {
|
|
nb := NewBernoulliNBClassifier()
|
|
|
|
Convey("PredictOne should panic if Fit was not called", func() {
|
|
testDoc := [][]byte{[]byte{0}, []byte{1}}
|
|
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
|
|
})
|
|
})
|
|
}
|
|
|
|
func convertToBinary(src base.FixedDataGrid) base.FixedDataGrid {
|
|
// Convert to binary
|
|
b := filters.NewBinaryConvertFilter()
|
|
attrs := base.NonClassAttributes(src)
|
|
for _, a := range attrs {
|
|
b.AddAttribute(a)
|
|
}
|
|
b.Train()
|
|
ret := base.NewLazilyFilteredInstances(src, b)
|
|
return ret
|
|
}
|
|
|
|
func TestSerialize(t *testing.T) {
|
|
Convey("Given simple training/test data", t, func() {
|
|
trainingData, err := base.ParseCSVToInstances("test/simple_train.csv", false)
|
|
So(err, ShouldBeNil)
|
|
|
|
testData, err := base.ParseCSVToTemplatedInstances("test/simple_test.csv", false, trainingData)
|
|
So(err, ShouldBeNil)
|
|
|
|
nb := NewBernoulliNBClassifier()
|
|
nb.Fit(convertToBinary(trainingData))
|
|
oldPredictions, err := nb.Predict(convertToBinary(testData))
|
|
|
|
Convey("Saving the classifer should work...", func() {
|
|
f, err := ioutil.TempFile(os.TempDir(), "nb")
|
|
So(err, ShouldBeNil)
|
|
defer func() {
|
|
f.Close()
|
|
}()
|
|
err = nb.Save(f.Name())
|
|
So(err, ShouldBeNil)
|
|
Convey("Loading the classifier should work...", func() {
|
|
newNb := NewBernoulliNBClassifier()
|
|
err := newNb.Load(f.Name())
|
|
So(err, ShouldBeNil)
|
|
Convey("Predictions should match...", func() {
|
|
newPredictions, err := newNb.Predict(convertToBinary(testData))
|
|
So(err, ShouldBeNil)
|
|
So(base.InstancesAreEqual(oldPredictions, newPredictions), ShouldBeTrue)
|
|
})
|
|
})
|
|
})
|
|
})
|
|
}
|
|
|
|
func TestSimple(t *testing.T) {
|
|
Convey("Given a simple training dataset", t, func() {
|
|
trainingData, err := base.ParseCSVToInstances("test/simple_train.csv", false)
|
|
So(err, ShouldBeNil)
|
|
|
|
nb := NewBernoulliNBClassifier()
|
|
nb.Fit(convertToBinary(trainingData))
|
|
|
|
Convey("Check if Fit is working as expected", func() {
|
|
Convey("All data needed for prior should be correctly calculated", func() {
|
|
So(nb.classInstances["blue"], ShouldEqual, 2)
|
|
So(nb.classInstances["red"], ShouldEqual, 2)
|
|
So(nb.trainingInstances, ShouldEqual, 4)
|
|
})
|
|
|
|
Convey("'red' conditional probabilities should be correct", func() {
|
|
logCondProbTok0 := nb.condProb["red"][0]
|
|
logCondProbTok1 := nb.condProb["red"][1]
|
|
logCondProbTok2 := nb.condProb["red"][2]
|
|
|
|
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
|
|
So(logCondProbTok1, ShouldAlmostEqual, 1.0/3.0)
|
|
So(logCondProbTok2, ShouldAlmostEqual, 1.0)
|
|
})
|
|
|
|
Convey("'blue' conditional probabilities should be correct", func() {
|
|
logCondProbTok0 := nb.condProb["blue"][0]
|
|
logCondProbTok1 := nb.condProb["blue"][1]
|
|
logCondProbTok2 := nb.condProb["blue"][2]
|
|
|
|
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
|
|
So(logCondProbTok1, ShouldAlmostEqual, 1.0)
|
|
So(logCondProbTok2, ShouldAlmostEqual, 1.0/3.0)
|
|
})
|
|
})
|
|
|
|
Convey("PredictOne should work as expected", func() {
|
|
Convey("Using a document with different number of cols should panic", func() {
|
|
testDoc := [][]byte{[]byte{0}, []byte{2}}
|
|
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
|
|
})
|
|
|
|
Convey("Token 1 should be a good predictor of the blue class", func() {
|
|
testDoc := [][]byte{[]byte{0}, []byte{1}, []byte{0}}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
|
|
|
|
testDoc = [][]byte{[]byte{1}, []byte{1}, []byte{0}}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
|
|
})
|
|
|
|
Convey("Token 2 should be a good predictor of the red class", func() {
|
|
testDoc := [][]byte{[]byte{0}, []byte{0}, []byte{1}}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "red")
|
|
testDoc = [][]byte{[]byte{1}, []byte{0}, []byte{1}}
|
|
So(nb.PredictOne(testDoc), ShouldEqual, "red")
|
|
})
|
|
})
|
|
|
|
Convey("Predict should work as expected", func() {
|
|
testData, err := base.ParseCSVToTemplatedInstances("test/simple_test.csv", false, trainingData)
|
|
So(err, ShouldBeNil)
|
|
|
|
predictions, err := nb.Predict(convertToBinary(testData))
|
|
So(err, ShouldBeNil)
|
|
|
|
Convey("All simple predictions should be correct", func() {
|
|
So(base.GetClass(predictions, 0), ShouldEqual, "blue")
|
|
So(base.GetClass(predictions, 1), ShouldEqual, "red")
|
|
So(base.GetClass(predictions, 2), ShouldEqual, "blue")
|
|
So(base.GetClass(predictions, 3), ShouldEqual, "red")
|
|
})
|
|
})
|
|
})
|
|
}
|