mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-25 13:48:49 +08:00
275 lines
7.3 KiB
Go
275 lines
7.3 KiB
Go
// Package knn implements a K Nearest Neighbors object, capable of both classification
|
|
// and regression. It accepts data in the form of a slice of float64s, which are then reshaped
|
|
// into a X by Y matrix.
|
|
package knn
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/gonum/matrix/mat64"
|
|
"github.com/sjwhitworth/golearn/base"
|
|
"github.com/sjwhitworth/golearn/metrics/pairwise"
|
|
"github.com/sjwhitworth/golearn/utilities"
|
|
)
|
|
|
|
// A KNNClassifier consists of a data matrix, associated labels in the same order as the matrix, and a distance function.
|
|
// The accepted distance functions at this time are 'euclidean' and 'manhattan'.
|
|
// Optimisations only occur when things are identically group into identical
|
|
// AttributeGroups, which don't include the class variable, in the same order.
|
|
type KNNClassifier struct {
|
|
base.BaseEstimator
|
|
TrainingData base.FixedDataGrid
|
|
DistanceFunc string
|
|
NearestNeighbours int
|
|
AllowOptimisations bool
|
|
}
|
|
|
|
// NewKnnClassifier returns a new classifier
|
|
func NewKnnClassifier(distfunc string, neighbours int) *KNNClassifier {
|
|
KNN := KNNClassifier{}
|
|
KNN.DistanceFunc = distfunc
|
|
KNN.NearestNeighbours = neighbours
|
|
KNN.AllowOptimisations = true
|
|
return &KNN
|
|
}
|
|
|
|
// Fit stores the training data for later
|
|
func (KNN *KNNClassifier) Fit(trainingData base.FixedDataGrid) {
|
|
KNN.TrainingData = trainingData
|
|
}
|
|
|
|
func (KNN *KNNClassifier) canUseOptimisations(what base.FixedDataGrid) bool {
|
|
// Check that the two have exactly the same layout
|
|
if !base.CheckStrictlyCompatible(what, KNN.TrainingData) {
|
|
return false
|
|
}
|
|
// Check that the two are DenseInstances
|
|
whatd, ok1 := what.(*base.DenseInstances)
|
|
_, ok2 := KNN.TrainingData.(*base.DenseInstances)
|
|
if !ok1 || !ok2 {
|
|
return false
|
|
}
|
|
// Check that no Class Attributes are mixed in with the data
|
|
classAttrs := whatd.AllClassAttributes()
|
|
normalAttrs := base.NonClassAttributes(whatd)
|
|
// Retrieve all the AGs
|
|
ags := whatd.AllAttributeGroups()
|
|
classAttrGroups := make([]base.AttributeGroup, 0)
|
|
for agName := range ags {
|
|
ag := ags[agName]
|
|
attrs := ag.Attributes()
|
|
matched := false
|
|
for _, a := range attrs {
|
|
for _, c := range classAttrs {
|
|
if a.Equals(c) {
|
|
matched = true
|
|
}
|
|
}
|
|
}
|
|
if matched {
|
|
classAttrGroups = append(classAttrGroups, ag)
|
|
}
|
|
}
|
|
for _, cag := range classAttrGroups {
|
|
attrs := cag.Attributes()
|
|
common := base.AttributeIntersect(normalAttrs, attrs)
|
|
if len(common) != 0 {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Check that all of the Attributes are numeric
|
|
for _, a := range normalAttrs {
|
|
if _, ok := a.(*base.FloatAttribute); !ok {
|
|
return false
|
|
}
|
|
}
|
|
// If that's fine, return true
|
|
return true
|
|
}
|
|
|
|
// Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.
|
|
func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) base.FixedDataGrid {
|
|
// Check what distance function we are using
|
|
var distanceFunc pairwise.PairwiseDistanceFunc
|
|
switch KNN.DistanceFunc {
|
|
case "euclidean":
|
|
distanceFunc = pairwise.NewEuclidean()
|
|
case "manhattan":
|
|
distanceFunc = pairwise.NewManhattan()
|
|
default:
|
|
panic("unsupported distance function")
|
|
}
|
|
// Check Compatibility
|
|
allAttrs := base.CheckCompatible(what, KNN.TrainingData)
|
|
if allAttrs == nil {
|
|
// Don't have the same Attributes
|
|
return nil
|
|
}
|
|
|
|
// Use optimised version if permitted
|
|
if KNN.AllowOptimisations {
|
|
if KNN.DistanceFunc == "euclidean" {
|
|
if KNN.canUseOptimisations(what) {
|
|
return KNN.optimisedEuclideanPredict(what.(*base.DenseInstances))
|
|
}
|
|
}
|
|
}
|
|
fmt.Println("Optimisations are switched off")
|
|
|
|
// Remove the Attributes which aren't numeric
|
|
allNumericAttrs := make([]base.Attribute, 0)
|
|
for _, a := range allAttrs {
|
|
if fAttr, ok := a.(*base.FloatAttribute); ok {
|
|
allNumericAttrs = append(allNumericAttrs, fAttr)
|
|
}
|
|
}
|
|
|
|
// Generate return vector
|
|
ret := base.GeneratePredictionVector(what)
|
|
|
|
// Resolve Attribute specifications for both
|
|
whatAttrSpecs := base.ResolveAttributes(what, allNumericAttrs)
|
|
trainAttrSpecs := base.ResolveAttributes(KNN.TrainingData, allNumericAttrs)
|
|
|
|
// Reserve storage for most the most similar items
|
|
distances := make(map[int]float64)
|
|
|
|
// Reserve storage for voting map
|
|
maxmap := make(map[string]int)
|
|
|
|
// Reserve storage for row computations
|
|
trainRowBuf := make([]float64, len(allNumericAttrs))
|
|
predRowBuf := make([]float64, len(allNumericAttrs))
|
|
|
|
_, maxRow := what.Size()
|
|
curRow := 0
|
|
|
|
// Iterate over all outer rows
|
|
what.MapOverRows(whatAttrSpecs, func(predRow [][]byte, predRowNo int) (bool, error) {
|
|
|
|
if (curRow%1) == 0 && curRow > 0 {
|
|
fmt.Printf("KNN: %.2f %% done\n", float64(curRow)*100.0/float64(maxRow))
|
|
}
|
|
curRow++
|
|
|
|
// Read the float values out
|
|
for i, _ := range allNumericAttrs {
|
|
predRowBuf[i] = base.UnpackBytesToFloat(predRow[i])
|
|
}
|
|
|
|
predMat := utilities.FloatsToMatrix(predRowBuf)
|
|
|
|
// Find the closest match in the training data
|
|
KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {
|
|
// Read the float values out
|
|
for i, _ := range allNumericAttrs {
|
|
trainRowBuf[i] = base.UnpackBytesToFloat(trainRow[i])
|
|
}
|
|
|
|
// Compute the distance
|
|
trainMat := utilities.FloatsToMatrix(trainRowBuf)
|
|
distances[srcRowNo] = distanceFunc.Distance(predMat, trainMat)
|
|
return true, nil
|
|
})
|
|
|
|
sorted := utilities.SortIntMap(distances)
|
|
values := sorted[:KNN.NearestNeighbours]
|
|
|
|
maxClass := KNN.vote(maxmap, values)
|
|
|
|
base.SetClass(ret, predRowNo, maxClass)
|
|
return true, nil
|
|
|
|
})
|
|
|
|
return ret
|
|
}
|
|
|
|
func (KNN *KNNClassifier) vote(maxmap map[string]int, values []int) string {
|
|
// Reset maxMap
|
|
for a := range maxmap {
|
|
maxmap[a] = 0
|
|
}
|
|
|
|
// Refresh maxMap
|
|
for _, elem := range values {
|
|
label := base.GetClass(KNN.TrainingData, elem)
|
|
if _, ok := maxmap[label]; ok {
|
|
maxmap[label]++
|
|
} else {
|
|
maxmap[label] = 1
|
|
}
|
|
}
|
|
|
|
// Sort the maxMap
|
|
var maxClass string
|
|
maxVal := -1
|
|
for a := range maxmap {
|
|
if maxmap[a] > maxVal {
|
|
maxVal = maxmap[a]
|
|
maxClass = a
|
|
}
|
|
}
|
|
return maxClass
|
|
}
|
|
|
|
// A KNNRegressor consists of a data matrix, associated result variables in the same order as the matrix, and a name.
|
|
type KNNRegressor struct {
|
|
base.BaseEstimator
|
|
Values []float64
|
|
DistanceFunc string
|
|
}
|
|
|
|
// NewKnnRegressor mints a new classifier.
|
|
func NewKnnRegressor(distfunc string) *KNNRegressor {
|
|
KNN := KNNRegressor{}
|
|
KNN.DistanceFunc = distfunc
|
|
return &KNN
|
|
}
|
|
|
|
func (KNN *KNNRegressor) Fit(values []float64, numbers []float64, rows int, cols int) {
|
|
if rows != len(values) {
|
|
panic(mat64.ErrShape)
|
|
}
|
|
|
|
KNN.Data = mat64.NewDense(rows, cols, numbers)
|
|
KNN.Values = values
|
|
}
|
|
|
|
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {
|
|
// Get the number of rows
|
|
rows, _ := KNN.Data.Dims()
|
|
rownumbers := make(map[int]float64)
|
|
labels := make([]float64, 0)
|
|
|
|
// Check what distance function we are using
|
|
var distanceFunc pairwise.PairwiseDistanceFunc
|
|
switch KNN.DistanceFunc {
|
|
case "euclidean":
|
|
distanceFunc = pairwise.NewEuclidean()
|
|
case "manhattan":
|
|
distanceFunc = pairwise.NewManhattan()
|
|
default:
|
|
panic("unsupported distance function")
|
|
}
|
|
|
|
for i := 0; i < rows; i++ {
|
|
row := KNN.Data.RowView(i)
|
|
distance := distanceFunc.Distance(utilities.VectorToMatrix(row), vector)
|
|
rownumbers[i] = distance
|
|
}
|
|
|
|
sorted := utilities.SortIntMap(rownumbers)
|
|
values := sorted[:K]
|
|
|
|
var sum float64
|
|
for _, elem := range values {
|
|
value := KNN.Values[elem]
|
|
labels = append(labels, value)
|
|
sum += value
|
|
}
|
|
|
|
average := sum / float64(K)
|
|
return average
|
|
}
|