mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00
447 lines
10 KiB
Go
447 lines
10 KiB
Go
package trees
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/sjwhitworth/golearn/base"
|
|
)
|
|
|
|
// The "r" prefix to all function names indicates that they were tailored to support regression.
|
|
|
|
// See cart_classifier for details on functions.
|
|
type RNode struct {
|
|
Left *RNode
|
|
Right *RNode
|
|
Threshold float64
|
|
Feature int64
|
|
LeftPred float64
|
|
RightPred float64
|
|
Use_not bool
|
|
}
|
|
|
|
type RTree struct {
|
|
RootNode *RNode
|
|
criterion string
|
|
maxDepth int64
|
|
triedSplits [][]float64
|
|
}
|
|
|
|
func meanAbsoluteError(y []float64, yBar float64) float64 {
|
|
error := 0.0
|
|
for _, target := range y {
|
|
error += math.Abs(target - yBar)
|
|
}
|
|
error /= float64(len(y))
|
|
return error
|
|
}
|
|
|
|
func average(y []float64) float64 {
|
|
mean := 0.0
|
|
for _, value := range y {
|
|
mean += value
|
|
}
|
|
mean /= float64(len(y))
|
|
return mean
|
|
}
|
|
|
|
func maeImpurity(y []float64) (float64, float64) {
|
|
yHat := average(y)
|
|
return meanAbsoluteError(y, yHat), yHat
|
|
}
|
|
|
|
func meanSquaredError(y []float64, yBar float64) float64 {
|
|
error := 0.0
|
|
for _, target := range y {
|
|
item_error := target - yBar
|
|
error += math.Pow(item_error, 2)
|
|
}
|
|
error /= float64(len(y))
|
|
return error
|
|
}
|
|
|
|
func mseImpurity(y []float64) (float64, float64) {
|
|
yHat := average(y)
|
|
return meanSquaredError(y, yHat), yHat
|
|
}
|
|
|
|
func rtestSplit(data [][]float64, feature int64, y []float64, threshold float64) ([][]float64, [][]float64, []float64, []float64) {
|
|
var left [][]float64
|
|
var lefty []float64
|
|
var right [][]float64
|
|
var righty []float64
|
|
|
|
for i := range data {
|
|
example := data[i]
|
|
if example[feature] < threshold {
|
|
left = append(left, example)
|
|
lefty = append(lefty, y[i])
|
|
} else {
|
|
right = append(right, example)
|
|
righty = append(righty, y[i])
|
|
}
|
|
}
|
|
|
|
return left, right, lefty, righty
|
|
}
|
|
|
|
func rstringInSlice(a float64, list []float64) bool {
|
|
for _, b := range list {
|
|
if b == a {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func rfindUnique(data []float64) []float64 {
|
|
var unique []float64
|
|
for i := range data {
|
|
if !rstringInSlice(data[i], unique) {
|
|
unique = append(unique, data[i])
|
|
}
|
|
}
|
|
return unique
|
|
}
|
|
|
|
func rgetFeature(data [][]float64, feature int64) []float64 {
|
|
var featureVals []float64
|
|
for i := range data {
|
|
featureVals = append(featureVals, data[i][feature])
|
|
}
|
|
return featureVals
|
|
}
|
|
|
|
func NewDecisionTreeRegressor(criterion string, maxDepth int64) *RTree {
|
|
var tree RTree
|
|
tree.maxDepth = maxDepth
|
|
tree.criterion = strings.ToLower(criterion)
|
|
return &tree
|
|
}
|
|
|
|
func rvalidate(triedSplits [][]float64, feature int64, threshold float64) bool {
|
|
for i := range triedSplits {
|
|
split := triedSplits[i]
|
|
featureTried, thresholdTried := split[0], split[1]
|
|
if int64(featureTried) == feature && thresholdTried == threshold {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Helper struct for re-rdering data
|
|
type rSlice struct {
|
|
sort.Float64Slice
|
|
Idx []int
|
|
}
|
|
|
|
// Helper function for re-ordering data
|
|
func (s rSlice) rSwap(i, j int) {
|
|
s.Float64Slice.Swap(i, j)
|
|
s.Idx[i], s.Idx[j] = s.Idx[j], s.Idx[i]
|
|
}
|
|
|
|
// Final Helper Function for re-ordering data
|
|
func rNewSlice(n []float64) *rSlice {
|
|
s := &rSlice{Float64Slice: sort.Float64Slice(n), Idx: make([]int, len(n))}
|
|
|
|
for i := range s.Idx {
|
|
s.Idx[i] = i
|
|
}
|
|
return s
|
|
}
|
|
|
|
func rreOrderData(featureVal []float64, data [][]float64, y []float64) ([][]float64, []float64) {
|
|
s := rNewSlice(featureVal)
|
|
sort.Sort(s)
|
|
|
|
indexes := s.Idx
|
|
|
|
var dataSorted [][]float64
|
|
var ySorted []float64
|
|
|
|
for _, index := range indexes {
|
|
dataSorted = append(dataSorted, data[index])
|
|
ySorted = append(ySorted, y[index])
|
|
}
|
|
|
|
return dataSorted, ySorted
|
|
|
|
}
|
|
|
|
func rupdateSplit(left [][]float64, lefty []float64, right [][]float64, righty []float64, feature int64, threshold float64) ([][]float64, []float64, [][]float64, []float64) {
|
|
|
|
for right[0][feature] < threshold {
|
|
left = append(left, right[0])
|
|
right = right[1:]
|
|
lefty = append(lefty, righty[0])
|
|
righty = righty[1:]
|
|
}
|
|
|
|
return left, lefty, right, righty
|
|
}
|
|
|
|
func sum(y []int64) int64 {
|
|
var sum_ int64 = 0
|
|
for i := range y {
|
|
sum_ += y[i]
|
|
}
|
|
return sum_
|
|
}
|
|
|
|
// Extra Method for creating simple to use interface. Many params are either redundant for user but are needed only for recursive logic.
|
|
func (tree *RTree) Fit(X base.FixedDataGrid) {
|
|
var emptyNode RNode
|
|
data := regressorConvertInstancesToProblemVec(X)
|
|
y := regressorConvertInstancesToLabelVec(X)
|
|
|
|
emptyNode = rbestSplit(*tree, data, y, emptyNode, tree.criterion, tree.maxDepth, 0)
|
|
|
|
tree.RootNode = &emptyNode
|
|
}
|
|
|
|
// Essentially the Fit Method
|
|
func rbestSplit(tree RTree, data [][]float64, y []float64, upperNode RNode, criterion string, maxDepth int64, depth int64) RNode {
|
|
|
|
depth++
|
|
|
|
if depth > maxDepth && maxDepth != -1 {
|
|
return upperNode
|
|
}
|
|
|
|
numFeatures := len(data[0])
|
|
var bestLoss float64
|
|
var origLoss float64
|
|
|
|
if criterion == "mae" {
|
|
origLoss, upperNode.LeftPred = maeImpurity(y)
|
|
} else {
|
|
origLoss, upperNode.LeftPred = mseImpurity(y)
|
|
}
|
|
|
|
bestLoss = origLoss
|
|
|
|
bestLeft := data
|
|
bestRight := data
|
|
bestLefty := y
|
|
bestRighty := y
|
|
|
|
numData := len(data)
|
|
|
|
bestLeftLoss := bestLoss
|
|
bestRightLoss := bestLoss
|
|
|
|
upperNode.Use_not = true
|
|
|
|
var leftN RNode
|
|
var rightN RNode
|
|
// Iterate over all features
|
|
for i := 0; i < numFeatures; i++ {
|
|
featureVal := rgetFeature(data, int64(i))
|
|
unique := rfindUnique(featureVal)
|
|
sort.Float64s(unique)
|
|
numUnique := len(unique)
|
|
|
|
sortData, sortY := rreOrderData(featureVal, data, y)
|
|
|
|
firstTime := true
|
|
|
|
var left, right [][]float64
|
|
var lefty, righty []float64
|
|
|
|
for j := range unique {
|
|
if j != (numUnique - 1) {
|
|
threshold := (unique[j] + unique[j+1]) / 2
|
|
if rvalidate(tree.triedSplits, int64(i), threshold) {
|
|
if firstTime {
|
|
left, right, lefty, righty = rtestSplit(sortData, int64(i), sortY, threshold)
|
|
firstTime = false
|
|
} else {
|
|
left, lefty, right, righty = rupdateSplit(left, lefty, right, righty, int64(i), threshold)
|
|
}
|
|
|
|
var leftLoss float64
|
|
var rightLoss float64
|
|
var leftPred float64
|
|
var rightPred float64
|
|
|
|
if criterion == "mae" {
|
|
leftLoss, leftPred = maeImpurity(lefty)
|
|
rightLoss, rightPred = maeImpurity(righty)
|
|
} else {
|
|
leftLoss, leftPred = mseImpurity(lefty)
|
|
rightLoss, rightPred = mseImpurity(righty)
|
|
}
|
|
|
|
subLoss := (leftLoss * float64(len(left)) / float64(numData)) + (rightLoss * float64(len(right)) / float64(numData))
|
|
|
|
if subLoss < bestLoss {
|
|
bestLoss = subLoss
|
|
bestLeft = left
|
|
bestRight = right
|
|
bestLefty = lefty
|
|
bestRighty = righty
|
|
upperNode.Threshold = threshold
|
|
upperNode.Feature = int64(i)
|
|
|
|
upperNode.LeftPred = leftPred
|
|
upperNode.RightPred = rightPred
|
|
|
|
bestLeftLoss = leftLoss
|
|
bestRightLoss = rightLoss
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
if bestLoss == origLoss {
|
|
upperNode.Use_not = false
|
|
return upperNode
|
|
}
|
|
|
|
if bestLoss > 0 {
|
|
|
|
if bestLeftLoss > 0 {
|
|
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
|
|
leftN = rbestSplit(tree, bestLeft, bestLefty, leftN, criterion, maxDepth, depth)
|
|
if leftN.Use_not == true {
|
|
upperNode.Left = &leftN
|
|
}
|
|
|
|
}
|
|
if bestRightLoss > 0 {
|
|
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
|
|
rightN = rbestSplit(tree, bestRight, bestRighty, rightN, criterion, maxDepth, depth)
|
|
if rightN.Use_not == true {
|
|
upperNode.Right = &rightN
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return upperNode
|
|
}
|
|
|
|
func (tree *RTree) PrintTree() {
|
|
rootNode := *tree.RootNode
|
|
printTreeFromNode(rootNode, "")
|
|
}
|
|
|
|
func printTreeFromNode(tree RNode, spacing string) float64 {
|
|
|
|
fmt.Print(spacing + "Feature ")
|
|
fmt.Print(tree.Feature)
|
|
fmt.Print(" < ")
|
|
fmt.Println(tree.Threshold)
|
|
|
|
if tree.Left == nil {
|
|
fmt.Println(spacing + "---> True")
|
|
fmt.Print(" " + spacing + "PREDICT ")
|
|
fmt.Println(tree.LeftPred)
|
|
}
|
|
if tree.Right == nil {
|
|
fmt.Println(spacing + "---> FALSE")
|
|
fmt.Print(" " + spacing + "PREDICT ")
|
|
fmt.Println(tree.RightPred)
|
|
}
|
|
|
|
if tree.Left != nil {
|
|
fmt.Println(spacing + "---> True")
|
|
printTreeFromNode(*tree.Left, spacing+" ")
|
|
}
|
|
|
|
if tree.Right != nil {
|
|
fmt.Println(spacing + "---> False")
|
|
printTreeFromNode(*tree.Right, spacing+" ")
|
|
}
|
|
|
|
return 0.0
|
|
}
|
|
|
|
func predictSingle(tree RNode, instance []float64) float64 {
|
|
if instance[tree.Feature] < tree.Threshold {
|
|
if tree.Left == nil {
|
|
return tree.LeftPred
|
|
} else {
|
|
return predictSingle(*tree.Left, instance)
|
|
}
|
|
} else {
|
|
if tree.Right == nil {
|
|
return tree.RightPred
|
|
} else {
|
|
return predictSingle(*tree.Right, instance)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (tree *RTree) Predict(X_test base.FixedDataGrid) []float64 {
|
|
root := *tree.RootNode
|
|
test := regressorConvertInstancesToProblemVec(X_test)
|
|
return predictFromNode(root, test)
|
|
}
|
|
|
|
func predictFromNode(tree RNode, test [][]float64) []float64 {
|
|
var preds []float64
|
|
for i := range test {
|
|
i_pred := predictSingle(tree, test[i])
|
|
preds = append(preds, i_pred)
|
|
}
|
|
return preds
|
|
}
|
|
|
|
// Helper function to convert base.FixedDataGrid into required format. Called in Fit
|
|
func regressorConvertInstancesToProblemVec(X base.FixedDataGrid) [][]float64 {
|
|
// Allocate problem array
|
|
_, rows := X.Size()
|
|
problemVec := make([][]float64, rows)
|
|
|
|
// Retrieve numeric non-class Attributes
|
|
numericAttrs := base.NonClassFloatAttributes(X)
|
|
numericAttrSpecs := base.ResolveAttributes(X, numericAttrs)
|
|
|
|
// Convert each row
|
|
X.MapOverRows(numericAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
|
|
// Allocate a new row
|
|
probRow := make([]float64, len(numericAttrSpecs))
|
|
// Read out the row
|
|
for i, _ := range numericAttrSpecs {
|
|
probRow[i] = base.UnpackBytesToFloat(row[i])
|
|
}
|
|
// Add the row
|
|
problemVec[rowNo] = probRow
|
|
return true, nil
|
|
})
|
|
return problemVec
|
|
}
|
|
|
|
// Helper function to convert base.FixedDataGrid into required format. Called in Fit
|
|
func regressorConvertInstancesToLabelVec(X base.FixedDataGrid) []float64 {
|
|
// Get the class Attributes
|
|
classAttrs := X.AllClassAttributes()
|
|
// Only support 1 class Attribute
|
|
if len(classAttrs) != 1 {
|
|
panic(fmt.Sprintf("%d ClassAttributes (1 expected)", len(classAttrs)))
|
|
}
|
|
// ClassAttribute must be numeric
|
|
if _, ok := classAttrs[0].(*base.FloatAttribute); !ok {
|
|
panic(fmt.Sprintf("%s: ClassAttribute must be a FloatAttribute", classAttrs[0]))
|
|
}
|
|
// Allocate return structure
|
|
_, rows := X.Size()
|
|
// labelVec := make([]float64, rows)
|
|
labelVec := make([]float64, rows)
|
|
// Resolve class Attribute specification
|
|
classAttrSpecs := base.ResolveAttributes(X, classAttrs)
|
|
X.MapOverRows(classAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
|
|
labelVec[rowNo] = base.UnpackBytesToFloat(row[0])
|
|
return true, nil
|
|
})
|
|
return labelVec
|
|
}
|