1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/trees/cart_classifier.go
2020-07-18 12:26:50 +05:30

501 lines
13 KiB
Go

package trees
import (
"fmt"
"math"
"sort"
"strings"
"github.com/sjwhitworth/golearn/base"
)
// The "c" prefix to function names indicates that they were tailored for classification
// CNode is Node struct for Decision Tree Classifier
type CNode struct {
Left *CNode
Right *CNode
Threshold float64
Feature int64
LeftLabel int64
RightLabel int64
Use_not bool
maxDepth int64
}
// CTree: Tree struct for Decision Tree Classifier
type CTree struct {
RootNode *CNode
criterion string
maxDepth int64
labels []int64
triedSplits [][]float64
}
// Calculate Gini Impurity of Target Labels
func giniImpurity(y []int64, labels []int64) (float64, int64) {
nInstances := len(y)
gini := 0.0
maxLabelCount := 0
var maxLabel int64 = 0
for label := range labels {
numLabel := 0
for target := range y {
if y[target] == labels[label] {
numLabel++
}
}
p := float64(numLabel) / float64(nInstances)
gini += p * (1 - p)
if numLabel > maxLabelCount {
maxLabel = labels[label]
maxLabelCount = numLabel
}
}
return gini, maxLabel
}
// Calculate Entropy loss of Target Labels
func entropy(y []int64, labels []int64) (float64, int64) {
nInstances := len(y)
entropy := 0.0
maxLabelCount := 0
var maxLabel int64 = 0
for label := range labels {
numLabel := 0
for target := range y {
if y[target] == labels[label] {
numLabel++
}
}
p := float64(numLabel) / float64(nInstances)
logP := math.Log2(p)
if p == 0 {
logP = 0
}
entropy += -p * logP
if numLabel > maxLabelCount {
maxLabel = labels[label]
maxLabelCount = numLabel
}
}
return entropy, maxLabel
}
// Split the data into left node and right node based on feature and threshold - only needed for fresh nodes
func ctestSplit(data [][]float64, feature int64, y []int64, threshold float64) ([][]float64, [][]float64, []int64, []int64) {
var left [][]float64
var right [][]float64
var lefty []int64
var righty []int64
for i := range data {
example := data[i]
if example[feature] < threshold {
left = append(left, example)
lefty = append(lefty, y[i])
} else {
right = append(right, example)
righty = append(righty, y[i])
}
}
return left, right, lefty, righty
}
// Helper Function to check if data point is unique or not
func cstringInSlice(a float64, list []float64) bool {
for _, b := range list {
if b == a {
return true
}
}
return false
}
// Isolate only unique values. Needed for splitting data.
func cfindUnique(data []float64) []float64 {
var unique []float64
for i := range data {
if !cstringInSlice(data[i], unique) {
unique = append(unique, data[i])
}
}
return unique
}
// Isolate only the feature being considered for splitting
func cgetFeature(data [][]float64, feature int64) []float64 {
var featureVals []float64
for i := range data {
featureVals = append(featureVals, data[i][feature])
}
return featureVals
}
// Function to Create New Decision Tree Classifier
func NewDecisionTreeClassifier(criterion string, maxDepth int64, labels []int64) *CTree {
var tree CTree
tree.criterion = strings.ToLower(criterion)
tree.maxDepth = maxDepth
tree.labels = labels
return &tree
}
// Make sure that split being considered has not been done before
func cvalidate(triedSplits [][]float64, feature int64, threshold float64) bool {
for i := range triedSplits {
split := triedSplits[i]
featureTried, thresholdTried := split[0], split[1]
if int64(featureTried) == feature && thresholdTried == threshold {
return false
}
}
return true
}
// Helper struct for re-rdering data
type cSlice struct {
sort.Float64Slice
Idx []int
}
// Helper function for re-ordering data
func (s cSlice) cSwap(i, j int) {
s.Float64Slice.Swap(i, j)
s.Idx[i], s.Idx[j] = s.Idx[j], s.Idx[i]
}
// Final Helper Function for re-ordering data
func cNewSlice(n []float64) *cSlice {
s := &cSlice{Float64Slice: sort.Float64Slice(n), Idx: make([]int, len(n))}
for i := range s.Idx {
s.Idx[i] = i
}
return s
}
// Reorder the data by feature being considered. Optimizes code by reducing the number of times we have to loop over data for splitting
func creOrderData(featureVal []float64, data [][]float64, y []int64) ([][]float64, []int64) {
s := cNewSlice(featureVal)
sort.Sort(s)
indexes := s.Idx
var dataSorted [][]float64
var ySorted []int64
for _, index := range indexes {
dataSorted = append(dataSorted, data[index])
ySorted = append(ySorted, y[index])
}
return dataSorted, ySorted
}
// Change data in Left Node and Right Node based on change in threshold
func cupdateSplit(left [][]float64, lefty []int64, right [][]float64, righty []int64, feature int64, threshold float64) ([][]float64, []int64, [][]float64, []int64) {
for right[0][feature] < threshold {
left = append(left, right[0])
right = right[1:]
lefty = append(lefty, righty[0])
righty = righty[1:]
}
return left, lefty, right, righty
}
// Fit - Method visible to user to train tree
func (tree *CTree) Fit(X base.FixedDataGrid) {
var emptyNode CNode
data := classifierConvertInstancesToProblemVec(X)
y := classifierConvertInstancesToLabelVec(X)
emptyNode = cbestSplit(*tree, data, y, tree.labels, emptyNode, tree.criterion, tree.maxDepth, 0)
tree.RootNode = &emptyNode
}
// Iterativly find and record the best split - recursive function
func cbestSplit(tree CTree, data [][]float64, y []int64, labels []int64, upperNode CNode, criterion string, maxDepth int64, depth int64) CNode {
// Ensure that we have not reached maxDepth. maxDepth =-1 means split until nodes are pure
depth++
if maxDepth != -1 && depth > maxDepth {
return upperNode
}
numFeatures := len(data[0])
var bestGini float64
var origGini float64
// Calculate loss based on Criterion Specified by user
if criterion == "gini" {
origGini, upperNode.LeftLabel = giniImpurity(y, labels)
} else if criterion == "entropy" {
origGini, upperNode.LeftLabel = entropy(y, labels)
} else {
panic("Invalid impurity function, choose from GINI or ENTROPY")
}
bestGini = origGini
bestLeft := data
bestRight := data
bestLefty := y
bestRighty := y
numData := len(data)
bestLeftGini := bestGini
bestRightGini := bestGini
upperNode.Use_not = true
var leftN CNode
var rightN CNode
// Iterate over all features
for i := 0; i < numFeatures; i++ {
featureVal := cgetFeature(data, int64(i))
unique := cfindUnique(featureVal)
sort.Float64s(unique)
numUnique := len(unique)
sortData, sortY := creOrderData(featureVal, data, y)
firstTime := true
var left, right [][]float64
var lefty, righty []int64
// Iterate over all possible thresholds for that feature
for j := range unique {
if j != (numUnique - 1) {
threshold := (unique[j] + unique[j+1]) / 2
// Ensure that same split has not been made before
if cvalidate(tree.triedSplits, int64(i), threshold) {
// We need to split data from fresh when considering new feature for the first time.
// Otherwise, we need to update the split by moving data points from left to right.
if firstTime {
left, right, lefty, righty = ctestSplit(sortData, int64(i), sortY, threshold)
firstTime = false
} else {
left, lefty, right, righty = cupdateSplit(left, lefty, right, righty, int64(i), threshold)
}
var leftGini float64
var rightGini float64
var leftLabels int64
var rightLabels int64
if criterion == "gini" {
leftGini, leftLabels = giniImpurity(lefty, labels)
rightGini, rightLabels = giniImpurity(righty, labels)
} else if criterion == "entropy" {
leftGini, leftLabels = entropy(lefty, labels)
rightGini, rightLabels = entropy(righty, labels)
}
// Calculate weighted gini impurity of child nodes
subGini := (leftGini * float64(len(left)) / float64(numData)) + (rightGini * float64(len(right)) / float64(numData))
// If we find a split that reduces impurity
if subGini < bestGini {
bestGini = subGini
bestLeft = left
bestRight = right
bestLefty = lefty
bestRighty = righty
upperNode.Threshold = threshold
upperNode.Feature = int64(i)
upperNode.LeftLabel = leftLabels
upperNode.RightLabel = rightLabels
bestLeftGini = leftGini
bestRightGini = rightGini
}
}
}
}
}
// If no split was found, we don't want to use this node, so we will flag it
if bestGini == origGini {
upperNode.Use_not = false
return upperNode
}
// Until nodes are not pure
if bestGini > 0 {
// If left node is pure, no need to split on left side again
if bestLeftGini > 0 {
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
// Recursive splitting logic
leftN = cbestSplit(tree, bestLeft, bestLefty, labels, leftN, criterion, maxDepth, depth)
if leftN.Use_not == true {
upperNode.Left = &leftN
}
}
// If right node is pure, no need to split on right side again
if bestRightGini > 0 {
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
// Recursive splitting logic
rightN = cbestSplit(tree, bestRight, bestRighty, labels, rightN, criterion, maxDepth, depth)
if rightN.Use_not == true {
upperNode.Right = &rightN
}
}
}
// Return the node - contains all information regarding feature and threshold.
return upperNode
}
// PrintTree : this function prints out entire tree for visualization - visible to user
func (tree *CTree) PrintTree() {
rootNode := *tree.RootNode
cprintTreeFromNode(rootNode, "")
}
// Tree struct has root node. That is used to print tree - invisible to user but called from PrintTree
func cprintTreeFromNode(tree CNode, spacing string) float64 {
fmt.Print(spacing + "Feature ")
fmt.Print(tree.Feature)
fmt.Print(" < ")
fmt.Println(tree.Threshold)
if tree.Left == nil {
fmt.Println(spacing + "---> True")
fmt.Print(" " + spacing + "PREDICT ")
fmt.Println(tree.LeftLabel)
}
if tree.Right == nil {
fmt.Println(spacing + "---> FALSE")
fmt.Print(" " + spacing + "PREDICT ")
fmt.Println(tree.RightLabel)
}
if tree.Left != nil {
fmt.Println(spacing + "---> True")
cprintTreeFromNode(*tree.Left, spacing+" ")
}
if tree.Right != nil {
fmt.Println(spacing + "---> False")
cprintTreeFromNode(*tree.Right, spacing+" ")
}
return 0.0
}
// Predict a single data point by traversing the entire tree
func cpredictSingle(tree CNode, instance []float64) int64 {
if instance[tree.Feature] < tree.Threshold {
if tree.Left == nil {
return tree.LeftLabel
} else {
return cpredictSingle(*tree.Left, instance)
}
} else {
if tree.Right == nil {
return tree.RightLabel
} else {
return cpredictSingle(*tree.Right, instance)
}
}
}
// Predict is visible to user. Given test data, they receive predictions for every datapoint.
func (tree *CTree) Predict(X_test base.FixedDataGrid) []int64 {
root := *tree.RootNode
test := classifierConvertInstancesToProblemVec(X_test)
return cpredictFromNode(root, test)
}
// This function uses the rootnode from Predict. It is invisible to user, but called from predict method.
func cpredictFromNode(tree CNode, test [][]float64) []int64 {
var preds []int64
for i := range test {
iPred := cpredictSingle(tree, test[i])
preds = append(preds, iPred)
}
return preds
}
// Given Test data and label, return the accuracy of the classifier. Data has to be in float slice format before feeding.
func (tree *CTree) Evaluate(test base.FixedDataGrid) float64 {
rootNode := *tree.RootNode
xTest := classifierConvertInstancesToProblemVec(test)
yTest := classifierConvertInstancesToLabelVec(test)
return cevaluateFromNode(rootNode, xTest, yTest)
}
func cevaluateFromNode(tree CNode, xTest [][]float64, yTest []int64) float64 {
preds := cpredictFromNode(tree, xTest)
accuracy := 0.0
for i := range preds {
if preds[i] == yTest[i] {
accuracy++
}
}
accuracy /= float64(len(yTest))
return accuracy
}
// Helper function to convert base.FixedDataGrid into required format. Called in Fit
func classifierConvertInstancesToProblemVec(X base.FixedDataGrid) [][]float64 {
// Allocate problem array
_, rows := X.Size()
problemVec := make([][]float64, rows)
// Retrieve numeric non-class Attributes
numericAttrs := base.NonClassFloatAttributes(X)
numericAttrSpecs := base.ResolveAttributes(X, numericAttrs)
// Convert each row
X.MapOverRows(numericAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
// Allocate a new row
probRow := make([]float64, len(numericAttrSpecs))
// Read out the row
for i, _ := range numericAttrSpecs {
probRow[i] = base.UnpackBytesToFloat(row[i])
}
// Add the row
problemVec[rowNo] = probRow
return true, nil
})
return problemVec
}
// Helper function to convert base.FixedDataGrid into required format. Called in Fit
func classifierConvertInstancesToLabelVec(X base.FixedDataGrid) []int64 {
// Get the class Attributes
classAttrs := X.AllClassAttributes()
// Only support 1 class Attribute
if len(classAttrs) != 1 {
panic(fmt.Sprintf("%d ClassAttributes (1 expected)", len(classAttrs)))
}
// ClassAttribute must be numeric
if _, ok := classAttrs[0].(*base.FloatAttribute); !ok {
panic(fmt.Sprintf("%s: ClassAttribute must be a FloatAttribute", classAttrs[0]))
}
// Allocate return structure
_, rows := X.Size()
// labelVec := make([]float64, rows)
labelVec := make([]int64, rows)
// Resolve class Attribute specification
classAttrSpecs := base.ResolveAttributes(X, classAttrs)
X.MapOverRows(classAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
labelVec[rowNo] = int64(base.UnpackBytesToFloat(row[0]))
return true, nil
})
return labelVec
}