1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00
golearn/trees/tree_test.go
2014-05-17 18:06:01 +01:00

173 lines
4.6 KiB
Go

package trees
import (
"fmt"
base "github.com/sjwhitworth/golearn/base"
eval "github.com/sjwhitworth/golearn/evaluation"
filters "github.com/sjwhitworth/golearn/filters"
"math"
"testing"
)
func TestRandomTree(testEnv *testing.T) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
filt.Run(inst)
fmt.Println(inst)
r := new(RandomTreeRuleGenerator)
r.Attributes = 2
root := InferID3Tree(inst, r)
fmt.Println(root)
}
func TestRandomTreeClassification(testEnv *testing.T) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
insts := base.InstancesTrainTestSplit(inst, 0.6)
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
filt.Run(insts[0])
filt.Run(insts[1])
fmt.Println(inst)
r := new(RandomTreeRuleGenerator)
r.Attributes = 2
root := InferID3Tree(insts[0], r)
fmt.Println(root)
predictions := root.Predict(insts[1])
fmt.Println(predictions)
confusionMat := eval.GetConfusionMatrix(insts[1], predictions)
fmt.Println(confusionMat)
fmt.Println(eval.GetMacroPrecision(confusionMat))
fmt.Println(eval.GetMacroRecall(confusionMat))
fmt.Println(eval.GetSummary(confusionMat))
}
func TestRandomTreeClassification2(testEnv *testing.T) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
insts := base.InstancesTrainTestSplit(inst, 0.6)
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
fmt.Println(insts[1])
filt.Run(insts[1])
filt.Run(insts[0])
root := NewRandomTree(2)
root.Fit(insts[0])
fmt.Println(root)
predictions := root.Predict(insts[1])
fmt.Println(predictions)
confusionMat := eval.GetConfusionMatrix(insts[1], predictions)
fmt.Println(confusionMat)
fmt.Println(eval.GetMacroPrecision(confusionMat))
fmt.Println(eval.GetMacroRecall(confusionMat))
fmt.Println(eval.GetSummary(confusionMat))
}
func TestPruning(testEnv *testing.T) {
inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true)
if err != nil {
panic(err)
}
insts := base.InstancesTrainTestSplit(inst, 0.6)
filt := filters.NewChiMergeFilter(inst, 0.90)
filt.AddAllNumericAttributes()
filt.Build()
fmt.Println(insts[1])
filt.Run(insts[1])
filt.Run(insts[0])
root := NewRandomTree(2)
fitInsts := base.InstancesTrainTestSplit(insts[0], 0.6)
root.Fit(fitInsts[0])
root.Prune(fitInsts[1])
fmt.Println(root)
predictions := root.Predict(insts[1])
fmt.Println(predictions)
confusionMat := eval.GetConfusionMatrix(insts[1], predictions)
fmt.Println(confusionMat)
fmt.Println(eval.GetMacroPrecision(confusionMat))
fmt.Println(eval.GetMacroRecall(confusionMat))
fmt.Println(eval.GetSummary(confusionMat))
}
func TestInformationGain(testEnv *testing.T) {
outlook := make(map[string]map[string]int)
outlook["sunny"] = make(map[string]int)
outlook["overcast"] = make(map[string]int)
outlook["rain"] = make(map[string]int)
outlook["sunny"]["play"] = 2
outlook["sunny"]["noplay"] = 3
outlook["overcast"]["play"] = 4
outlook["rain"]["play"] = 3
outlook["rain"]["noplay"] = 2
entropy := getSplitEntropy(outlook)
if math.Abs(entropy-0.694) > 0.001 {
testEnv.Error(entropy)
}
}
func TestID3Inference(testEnv *testing.T) {
// Import the "PlayTennis" dataset
inst, err := base.ParseCSVToInstances("./tennis.csv", true)
if err != nil {
panic(err)
}
// Build the decision tree
rule := new(InformationGainRuleGenerator)
root := InferID3Tree(inst, rule)
// Verify the tree
// First attribute should be "outlook"
if root.SplitAttr.GetName() != "outlook" {
testEnv.Error(root)
}
sunnyChild := root.Children["sunny"]
overcastChild := root.Children["overcast"]
rainyChild := root.Children["rainy"]
if sunnyChild.SplitAttr.GetName() != "humidity" {
testEnv.Error(sunnyChild)
}
if rainyChild.SplitAttr.GetName() != "windy" {
testEnv.Error(rainyChild)
}
if overcastChild.SplitAttr != nil {
testEnv.Error(overcastChild)
}
sunnyLeafHigh := sunnyChild.Children["high"]
sunnyLeafNormal := sunnyChild.Children["normal"]
if sunnyLeafHigh.Class != "no" {
testEnv.Error(sunnyLeafHigh)
}
if sunnyLeafNormal.Class != "yes" {
testEnv.Error(sunnyLeafNormal)
}
windyLeafFalse := rainyChild.Children["false"]
windyLeafTrue := rainyChild.Children["true"]
if windyLeafFalse.Class != "yes" {
testEnv.Error(windyLeafFalse)
}
if windyLeafTrue.Class != "no" {
testEnv.Error(windyLeafTrue)
}
if overcastChild.Class != "yes" {
testEnv.Error(overcastChild)
}
}