1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-05-03 22:17:14 +08:00
golearn/neural/layered.go
Nick Poorman 8507a0cba8 Removed decimal precision formatting from String() string for MultiLayerNet.
Convergence and LearningRate values less than 0.00, ie. 0.003, were being printed as 0.00 which was incredibly misleading when debugging.
2015-07-13 18:30:27 -04:00

346 lines
9.2 KiB
Go

package neural
import (
"fmt"
"github.com/gonum/matrix/mat64"
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/filters"
"math"
"math/rand"
)
// MultiLayerNet creates a new Network which is conceptually
// organised into layers, zero or more of which are hidden.
//
// Within each layer, no neurons are connected.
//
// No neurons in a given layer are connected with any neurons
// in a previous layer.
//
// Neurons can only be connected to neurons in the layer above.
type MultiLayerNet struct {
network *Network
attrs map[base.Attribute]int
layers []int
classAttrOffset int
classAttrCount int
Convergence float64
MaxIterations int
LearningRate float64
}
// NewMultiLayerNet returns an underlying
// Network conceptuallyorganised into layers
//
// Layers variable = slice of integers representing
// node count at each layer.
func NewMultiLayerNet(layers []int) *MultiLayerNet {
return &MultiLayerNet{
nil,
make(map[base.Attribute]int),
layers,
0,
0,
0.001,
500,
0.90,
}
}
// String returns a human-readable summary of this network.
func (m *MultiLayerNet) String() string {
return fmt.Sprintf("MultiLayerNet(%v, %v, %f, %f, %d", m.layers, m.network, m.Convergence, m.LearningRate, m.MaxIterations)
}
func (m *MultiLayerNet) convertToFloatInsts(X base.FixedDataGrid) base.FixedDataGrid {
// Make sure everything's a FloatAttribute
fFilt := filters.NewFloatConvertFilter()
for _, a := range X.AllAttributes() {
fFilt.AddAttribute(a)
}
fFilt.Train()
insts := base.NewLazilyFilteredInstances(X, fFilt)
return insts
}
// Predict uses the underlying network to produce predictions for the
// class variables of X.
//
// Can only predict one CategoricalAttribute at a time, or up to n
// FloatAttributes. Set or unset ClassAttributes to work around this
// limitation.
func (m *MultiLayerNet) Predict(X base.FixedDataGrid) base.FixedDataGrid {
// Create the return vector
ret := base.GeneratePredictionVector(X)
// Make sure everything's a FloatAttribute
insts := m.convertToFloatInsts(X)
// Get the input/output Attributes
inputAttrs := base.NonClassAttributes(insts)
outputAttrs := ret.AllClassAttributes()
// Compute layers
layers := 2 + len(m.layers)
// Check that we're operating in a singular mode
floatMode := 0
categoricalMode := 0
for _, a := range outputAttrs {
if _, ok := a.(*base.CategoricalAttribute); ok {
categoricalMode++
} else if _, ok := a.(*base.FloatAttribute); ok {
floatMode++
} else {
panic("Unsupported output Attribute type!")
}
}
if floatMode > 0 && categoricalMode > 0 {
panic("Can't predict a mix of float and categorical Attributes")
} else if categoricalMode > 1 {
panic("Can't predict more than one categorical class Attribute")
}
// Create the activation vector
a := mat64.NewDense(m.network.size, 1, make([]float64, m.network.size))
// Resolve the input AttributeSpecs
inputAs := base.ResolveAttributes(insts, inputAttrs)
// Resolve the output Attributespecs
outputAs := base.ResolveAttributes(ret, outputAttrs)
// Map over each input row
insts.MapOverRows(inputAs, func(row [][]byte, rc int) (bool, error) {
// Clear the activation vector
for i := 0; i < m.network.size; i++ {
a.Set(i, 0, 0.0)
}
// Build the activation vector
for i, vb := range row {
if cIndex, ok := m.attrs[inputAs[i].GetAttribute()]; !ok {
panic("Can't resolve the Attribute!")
} else {
a.Set(cIndex, 0, base.UnpackBytesToFloat(vb))
}
}
// Robots, activate!
m.network.Activate(a, layers)
// Decide which class to set
if floatMode > 0 {
for _, as := range outputAs {
cIndex := m.attrs[as.GetAttribute()]
ret.Set(as, rc, base.PackFloatToBytes(a.At(cIndex, 0)))
}
} else {
maxIndex := 0
maxVal := 0.0
for i := m.classAttrOffset; i < m.classAttrOffset+m.classAttrCount; i++ {
val := a.At(i, 0)
if val > maxVal {
maxIndex = i
maxVal = val
}
}
maxIndex -= m.classAttrOffset
ret.Set(outputAs[0], rc, base.PackU64ToBytes(uint64(maxIndex)))
}
return true, nil
})
return ret
}
// Fit trains the neural network on the given fixed datagrid.
//
// Training stops when the mean-squared error acheived is less
// than the Convergence value, or when back-propagation has occured
// more times than the value set by MaxIterations.
func (m *MultiLayerNet) Fit(X base.FixedDataGrid) {
// Make sure everything's a FloatAttribute
insts := m.convertToFloatInsts(X)
// The size of the first layer is the number of things
// in the revised instances which aren't class Attributes
inputAttrsVec := base.NonClassAttributes(insts)
// The size of the output layer is the number of things
// in the revised instances which are class Attributes
classAttrsVec := insts.AllClassAttributes()
// The total number of layers is input layer + output layer
// plus number of layers specified
totalLayers := 2 + len(m.layers)
// The size is then augmented by the number of nodes
// in the centre
size := len(inputAttrsVec)
size += len(classAttrsVec)
hiddenSize := 0
for _, a := range m.layers {
size += a
hiddenSize += a
}
// Enumerate the Attributes
trainingAttrs := make(map[base.Attribute]int)
classAttrs := make(map[base.Attribute]int)
attrCounter := 0
for i, a := range inputAttrsVec {
attrCounter = i
m.attrs[a] = attrCounter
trainingAttrs[a] = attrCounter
}
m.classAttrOffset = attrCounter + 1
for _, a := range classAttrsVec {
attrCounter++
m.attrs[a] = attrCounter + hiddenSize
classAttrs[a] = attrCounter + hiddenSize
m.classAttrCount++
}
// Create the underlying Network
m.network = NewNetwork(size, len(inputAttrsVec), Sigmoid)
// Initialise inter-hidden layer weights and biases to small random values
layerOffset := len(inputAttrsVec)
for i := 0; i < len(m.layers)-1; i++ {
// Get the size of this layer
thisLayerSize := m.layers[i]
// Next layer size
nextLayerSize := m.layers[i+1]
// For every node in this layer
for j := 1; j <= thisLayerSize; j++ {
// Compute the offset
nodeOffset1 := layerOffset + j
// For every node in the next layer
for k := 1; k <= nextLayerSize; k++ {
// Compute offset
nodeOffset2 := layerOffset + thisLayerSize + k
// Set weight randomly
m.network.SetWeight(nodeOffset1, nodeOffset2, rand.NormFloat64()*0.1)
}
}
layerOffset += thisLayerSize
}
// Initialise biases with each hidden layer
layerOffset = len(inputAttrsVec)
for _, l := range m.layers {
for j := 1; j <= l; j++ {
nodeOffset := layerOffset + j
m.network.SetBias(nodeOffset, rand.NormFloat64()*0.1)
}
layerOffset += l
}
// Initialise biases for output layer
for i := 0; i < len(classAttrsVec); i++ {
nodeOffset := layerOffset + i
m.network.SetBias(nodeOffset, rand.NormFloat64()*0.1)
}
// Connect final hidden layer with the output layer
layerOffset = len(inputAttrsVec)
for i, l := range m.layers {
if i == len(m.layers)-1 {
for j := 1; j <= l; j++ {
nodeOffset1 := layerOffset + j
for k := 1; k <= len(classAttrsVec); k++ {
nodeOffset2 := layerOffset + l + k
m.network.SetWeight(nodeOffset1, nodeOffset2, rand.NormFloat64()*0.1)
}
}
}
layerOffset += l
}
// Connect input layer with first hidden layer (or output layer
for i := 1; i <= len(inputAttrsVec); i++ {
nextLayerLen := 0
if len(m.layers) > 0 {
nextLayerLen = m.layers[0]
} else {
nextLayerLen = len(classAttrsVec)
}
for j := 1; j <= nextLayerLen; j++ {
nodeOffset := len(inputAttrsVec) + j
v := rand.NormFloat64() * 0.1
m.network.SetWeight(i, nodeOffset, v)
}
}
// Create the training activation vector
trainVec := mat64.NewDense(size, 1, make([]float64, size))
// Create the error vector
errVec := mat64.NewDense(size, 1, make([]float64, size))
// Resolve training AttributeSpecs
trainAs := base.ResolveAllAttributes(insts)
// Feed-forward, compute error and update for each training example
// until convergence (what's that)
for iteration := 0; iteration < m.MaxIterations; iteration++ {
totalError := 0.0
maxRow := 0
insts.MapOverRows(trainAs, func(row [][]byte, i int) (bool, error) {
maxRow = i
// Clear vectors
for i := 0; i < size; i++ {
trainVec.Set(i, 0, 0.0)
errVec.Set(i, 0, 0.0)
}
// Build vectors
for i, vb := range row {
v := base.UnpackBytesToFloat(vb)
if attrIndex, ok := trainingAttrs[trainAs[i].GetAttribute()]; ok {
// Add to Activation vector
trainVec.Set(attrIndex, 0, v)
} else if attrIndex, ok := classAttrs[trainAs[i].GetAttribute()]; ok {
// Set to error vector
errVec.Set(attrIndex, 0, v)
} else {
panic("Should be able to find this Attribute!")
}
}
// Activate the network
m.network.Activate(trainVec, totalLayers-1)
// Compute the error
for a := range classAttrs {
cIndex := classAttrs[a]
errVec.Set(cIndex, 0, errVec.At(cIndex, 0)-trainVec.At(cIndex, 0))
}
// Update total error
totalError += math.Abs(errVec.Sum())
// Back-propagate the error
b := m.network.Error(trainVec, errVec, totalLayers)
// Update the weights
m.network.UpdateWeights(trainVec, b, m.LearningRate)
// Update the biases
m.network.UpdateBias(b, m.LearningRate)
return true, nil
})
totalError /= float64(maxRow)
// If we've converged, no need to carry on
if totalError < m.Convergence {
break
}
}
}