1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-25 13:48:49 +08:00
golearn/metrics/pairwise/manhattan_test.go
2019-06-18 10:36:02 +01:00

52 lines
1.2 KiB
Go

package pairwise
import (
"testing"
. "github.com/smartystreets/goconvey/convey"
"gonum.org/v1/gonum/mat"
)
func TestManhattan(t *testing.T) {
var vectorX, vectorY *mat.Dense
manhattan := NewManhattan()
Convey("Given two vectors that are same", t, func() {
vec := mat.NewDense(7, 1, []float64{0, 1, -2, 3.4, 5, -6.7, 89})
distance := manhattan.Distance(vec, vec)
Convey("The result should be 0", func() {
So(distance, ShouldEqual, 0)
})
})
Convey("Given two vectors", t, func() {
vectorX = mat.NewDense(3, 1, []float64{2, 2, 3})
vectorY = mat.NewDense(3, 1, []float64{1, 4, 5})
Convey("When calculating distance with column vectors", func() {
result := manhattan.Distance(vectorX, vectorY)
Convey("The result should be 5", func() {
So(result, ShouldEqual, 5)
})
})
Convey("When calculating distance with row vectors", func() {
vectorX.Copy(vectorX.T())
vectorY.Copy(vectorY.T())
result := manhattan.Distance(vectorX, vectorY)
Convey("The result should be 5", func() {
So(result, ShouldEqual, 5)
})
})
Convey("When calculating distance with different dimension matrices", func() {
vectorX.CloneFrom(vectorX.T())
So(func() { manhattan.Distance(vectorX, vectorY) }, ShouldPanic)
})
})
}