1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-25 13:48:49 +08:00
golearn/ensemble/multisvc_test.go

106 lines
2.8 KiB
Go

package ensemble
import (
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/evaluation"
. "github.com/smartystreets/goconvey/convey"
"io/ioutil"
"testing"
)
func TestMultiSVMUnweighted(t *testing.T) {
Convey("Loading data...", t, func() {
inst, err := base.ParseCSVToInstances("../examples/datasets/articles.csv", false)
So(err, ShouldBeNil)
X, Y := base.InstancesTrainTestSplit(inst, 0.4)
m := NewMultiLinearSVC("l1", "l2", true, 1.0, 1e-4, nil)
m.Fit(X)
Convey("Predictions should work...", func() {
predictions, err := m.Predict(Y)
So(err, ShouldEqual, nil)
cf, err := evaluation.GetConfusionMatrix(Y, predictions)
So(err, ShouldEqual, nil)
So(evaluation.GetAccuracy(cf), ShouldBeGreaterThan, 0.70)
})
Convey("Saving should work...", func() {
f, err := ioutil.TempFile("", "tree")
So(err, ShouldBeNil)
err = m.Save(f.Name())
So(err, ShouldBeNil)
Convey("Loading should work...", func() {
mLoaded := NewMultiLinearSVC("l1", "l2", true, 1.00, 1e-8, nil)
err := mLoaded.Load(f.Name())
So(err, ShouldBeNil)
Convey("Predictions should be the same...", func() {
originalPredictions, err := m.Predict(Y)
So(err, ShouldBeNil)
newPredictions, err := mLoaded.Predict(Y)
So(err, ShouldBeNil)
So(base.InstancesAreEqual(originalPredictions, newPredictions), ShouldBeTrue)
})
})
})
})
}
func TestMultiSVMWeighted(t *testing.T) {
Convey("Loading data...", t, func() {
weights := make(map[string]float64)
weights["Finance"] = 0.1739
weights["Tech"] = 0.0750
weights["Politics"] = 0.4928
inst, err := base.ParseCSVToInstances("../examples/datasets/articles.csv", false)
So(err, ShouldBeNil)
X, Y := base.InstancesTrainTestSplit(inst, 0.4)
m := NewMultiLinearSVC("l1", "l2", true, 0.62, 1e-4, weights)
m.Fit(X)
Convey("Predictions should work...", func() {
predictions, err := m.Predict(Y)
So(err, ShouldEqual, nil)
cf, err := evaluation.GetConfusionMatrix(Y, predictions)
So(err, ShouldEqual, nil)
So(evaluation.GetAccuracy(cf), ShouldBeGreaterThan, 0.60)
Convey("Saving should work...", func() {
f, err := ioutil.TempFile("", "tree")
So(err, ShouldBeNil)
err = m.Save(f.Name())
So(err, ShouldBeNil)
Convey("Loading should work...", func() {
mLoaded := NewMultiLinearSVC("l1", "l2", true, 1.00, 1e-8, weights)
err := mLoaded.Load(f.Name())
So(err, ShouldBeNil)
Convey("Predictions should be the same...", func() {
originalPredictions, err := m.Predict(Y)
So(err, ShouldBeNil)
newPredictions, err := mLoaded.Predict(Y)
So(err, ShouldBeNil)
So(base.InstancesAreEqual(originalPredictions, newPredictions), ShouldBeTrue)
})
})
})
})
})
}
func TestMultiSVMSaved(t *testing.T) {
Convey("Loading data...", t, func() {
})
}