package main import ( "fmt" base "github.com/sjwhitworth/golearn/base" knnclass "github.com/sjwhitworth/golearn/knn" util "github.com/sjwhitworth/golearn/utilities" mat "github.com/skelterjohn/go.matrix" ) func main() { //Parses the infamous Iris data. cols, rows, _, labels, data := base.ParseCsv("datasets/iris.csv", 4, []int{0, 1, 2}) //Initialises a new KNN classifier knn := knnclass.KNNClassifier{} // knn.C knn.New("Testing", labels, data, rows, cols) for { //Creates a random array of N float64s between 0 and 7 randArray := util.RandomArray(3, 7) //Initialises a vector with this array random := mat.MakeDenseMatrix(randArray, 1, 3) //Calculates the Euclidean distance and returns the most popular label labels, _ := knn.Predict(random, 3) fmt.Println(labels) } }