# # Generate sample data for the DBSCAN test # # Lifted from http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#example-cluster-plot-dbscan-py # import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) X = X.astype(np.float64) db = DBSCAN(eps=0.3, min_samples=10, metric='l2', algorithm='brute').fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ with open('dbscan.csv', 'w') as fscanout: with open('dbscan_labels.csv', 'w') as fscanlabout: for i in range(750): fscanout.write(",".join([str(x) for x in X[i,:]]) + "\n") fscanlabout.write(str(labels[i]) + "\n")