package knn import ( base "github.com/sjwhitworth/golearn/base" util "github.com/sjwhitworth/golearn/utilities" mat "github.com/skelterjohn/go.matrix" ) //A KNN Classifier. Consists of a data matrix, associated labels in the same order as the matrix, and a name. type KNNClassifier struct { base.BaseEstimator Labels []string DistanceFunc string } //Mints a new classifier. func (KNN *KNNClassifier) New(labels []string, numbers []float64, x int, y int, distfunc string) { KNN.Data = mat.MakeDenseMatrix(numbers, x, y) KNN.Labels = labels KNN.DistanceFunc = distfunc } // Returns a classification for the vector, based on a vector input, using the KNN algorithm. // @todo: Lots of room to improve this. V messy. func (KNN *KNNClassifier) Predict(vector *mat.DenseMatrix, K int) (string, []int) { rows := KNN.Data.Rows() rownumbers := make(map[int]float64) labels := make([]string, 0) maxmap := make(map[string]int) for i := 0; i < rows; i++ { row := KNN.Data.GetRowVector(i) //Will put code in to check errs later eucdistance, _ := util.ComputeDistance(KNN.DistanceFunc, row, vector) rownumbers[i] = eucdistance } sorted := util.SortIntMap(rownumbers) values := sorted[:K] for _, elem := range values { labels = append(labels, KNN.Labels[elem]) if _, ok := maxmap[KNN.Labels[elem]]; ok { maxmap[KNN.Labels[elem]] += 1 } else { maxmap[KNN.Labels[elem]] = 1 } } sortedlabels := util.SortStringMap(maxmap) label := sortedlabels[0] return label, values }