package meta import ( "fmt" "github.com/sjwhitworth/golearn/base" eval "github.com/sjwhitworth/golearn/evaluation" "github.com/sjwhitworth/golearn/filters" "github.com/sjwhitworth/golearn/trees" "math/rand" "testing" "time" ) func BenchmarkBaggingRandomForestFit(testEnv *testing.B) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } rand.Seed(time.Now().UnixNano()) filt := filters.NewChiMergeFilter(inst, 0.90) for _, a := range base.NonClassFloatAttributes(inst) { filt.AddAttribute(a) } filt.Train() instf := base.NewLazilyFilteredInstances(inst, filt) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } testEnv.ResetTimer() for i := 0; i < 20; i++ { rf.Fit(instf) } } func BenchmarkBaggingRandomForestPredict(testEnv *testing.B) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } rand.Seed(time.Now().UnixNano()) filt := filters.NewChiMergeFilter(inst, 0.90) for _, a := range base.NonClassFloatAttributes(inst) { filt.AddAttribute(a) } filt.Train() instf := base.NewLazilyFilteredInstances(inst, filt) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } rf.Fit(instf) testEnv.ResetTimer() for i := 0; i < 20; i++ { rf.Predict(instf) } } func TestRandomForest1(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } rand.Seed(time.Now().UnixNano()) trainData, testData := base.InstancesTrainTestSplit(inst, 0.6) filt := filters.NewChiMergeFilter(inst, 0.90) for _, a := range base.NonClassFloatAttributes(inst) { filt.AddAttribute(a) } filt.Train() trainDataf := base.NewLazilyFilteredInstances(trainData, filt) testDataf := base.NewLazilyFilteredInstances(testData, filt) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } rf.Fit(trainDataf) fmt.Println(rf) predictions := rf.Predict(testDataf) fmt.Println(predictions) confusionMat := eval.GetConfusionMatrix(testDataf, predictions) fmt.Println(confusionMat) fmt.Println(eval.GetMacroPrecision(confusionMat)) fmt.Println(eval.GetMacroRecall(confusionMat)) fmt.Println(eval.GetSummary(confusionMat)) }