package ensemble import ( "fmt" base "github.com/sjwhitworth/golearn/base" eval "github.com/sjwhitworth/golearn/evaluation" filters "github.com/sjwhitworth/golearn/filters" "testing" ) func TestRandomForest1(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } trainData, testData := base.InstancesTrainTestSplit(inst, 0.60) filt := filters.NewChiMergeFilter(trainData, 0.90) filt.AddAllNumericAttributes() filt.Build() filt.Run(testData) filt.Run(trainData) rf := NewRandomForest(10, 3) rf.Fit(trainData) predictions := rf.Predict(testData) fmt.Println(predictions) confusionMat := eval.GetConfusionMatrix(testData, predictions) fmt.Println(confusionMat) fmt.Println(eval.GetSummary(confusionMat)) }