package filters import ( "fmt" base "github.com/sjwhitworth/golearn/base" "math" "testing" ) func TestChiMFreqTable(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/chim.csv", true) if err != nil { panic(err) } freq := ChiMBuildFrequencyTable(0, inst) if freq[0].Frequency["c1"] != 1 { testEnv.Error("Wrong frequency") } if freq[0].Frequency["c3"] != 4 { testEnv.Errorf("Wrong frequency %s", freq[1]) } if freq[10].Frequency["c2"] != 1 { testEnv.Error("Wrong frequency") } } func TestChiClassCounter(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/chim.csv", true) if err != nil { panic(err) } freq := ChiMBuildFrequencyTable(0, inst) classes := chiCountClasses(freq) if classes["c1"] != 27 { testEnv.Error(classes) } if classes["c2"] != 12 { testEnv.Error(classes) } if classes["c3"] != 21 { testEnv.Error(classes) } } func TestStatisticValues(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/chim.csv", true) if err != nil { panic(err) } freq := ChiMBuildFrequencyTable(0, inst) chiVal := chiComputeStatistic(freq[5], freq[6]) if math.Abs(chiVal-1.89) > 0.01 { testEnv.Error(chiVal) } chiVal = chiComputeStatistic(freq[1], freq[2]) if math.Abs(chiVal-1.08) > 0.01 { testEnv.Error(chiVal) } } func TestChiSquareDistValues(testEnv *testing.T) { chiVal1 := chiSquaredPercentile(2, 4.61) chiVal2 := chiSquaredPercentile(3, 7.82) chiVal3 := chiSquaredPercentile(4, 13.28) if math.Abs(chiVal1-0.90) > 0.001 { testEnv.Error(chiVal1) } if math.Abs(chiVal2-0.95) > 0.001 { testEnv.Error(chiVal2) } if math.Abs(chiVal3-0.99) > 0.001 { testEnv.Error(chiVal3) } } func TestChiMerge1(testEnv *testing.T) { // See Bramer, Principles of Machine Learning inst, err := base.ParseCSVToInstances("../examples/datasets/chim.csv", true) if err != nil { panic(err) } freq := chiMerge(inst, 0, 0.90, 0, inst.Rows) if len(freq) != 3 { testEnv.Error("Wrong length") } if freq[0].Value != 1.3 { testEnv.Error(freq[0]) } if freq[1].Value != 56.2 { testEnv.Error(freq[1]) } if freq[2].Value != 87.1 { testEnv.Error(freq[2]) } } func TestChiMerge2(testEnv *testing.T) { // // See http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1992-Kerber-ChimErge-AAAI92.pdf // Randy Kerber, ChiMerge: Discretisation of Numeric Attributes, 1992 inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } attrs := make([]int, 1) attrs[0] = 0 inst.Sort(base.Ascending, attrs) freq := chiMerge(inst, 0, 0.90, 0, inst.Rows) if len(freq) != 5 { testEnv.Errorf("Wrong length (%d)", len(freq)) testEnv.Error(freq) } if freq[0].Value != 4.3 { testEnv.Error(freq[0]) } if freq[1].Value != 5.5 { testEnv.Error(freq[1]) } if freq[2].Value != 5.8 { testEnv.Error(freq[2]) } if freq[3].Value != 6.3 { testEnv.Error(freq[3]) } if freq[4].Value != 7.1 { testEnv.Error(freq[4]) } } func TestChiMerge3(testEnv *testing.T) { // See http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1992-Kerber-ChimErge-AAAI92.pdf // Randy Kerber, ChiMerge: Discretisation of Numeric Attributes, 1992 inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } attrs := make([]int, 1) attrs[0] = 0 inst.Sort(base.Ascending, attrs) filt := NewChiMergeFilter(inst, 0.90) filt.AddAttribute(inst.GetAttr(0)) filt.Build() filt.Run(inst) fmt.Println(inst) }