package knn import ( "fmt" "math" base "github.com/sjwhitworth/golearn/base" util "github.com/sjwhitworth/golearn/utilities" mat "github.com/skelterjohn/go.matrix" ) //A KNN Classifier. Consists of a data matrix, associated labels in the same order as the matrix, and a name. type KNNClassifier struct { base.BaseClassifier } //Mints a new classifier. func (KNN *KNNClassifier) New(name string, labels []string, numbers []float64, x int, y int) { //Write in some error handling here // if x != len(KNN.Labels) { // return errors.New("KNN: There must be a label for each row") // } KNN.Data = *mat.MakeDenseMatrix(numbers, x, y) KNN.Name = name KNN.Labels = labels } //Computes the Euclidean distance between two vectors. func (KNN *KNNClassifier) ComputeDistance(vector *mat.DenseMatrix, testrow *mat.DenseMatrix) float64 { var sum float64 difference, err := testrow.MinusDense(vector) flat := difference.Array() if err != nil { fmt.Println(err) } for _, i := range flat { squared := math.Pow(i, 2) sum += squared } eucdistance := math.Sqrt(sum) return eucdistance } //Returns a classification for the vector, based on a vector input, using the KNN algorithm. func (KNN *KNNClassifier) Predict(vector *mat.DenseMatrix, K int) (string, []int) { rows := KNN.Data.Rows() rownumbers := make(map[int]float64) labels := make([]string, 0) maxmap := make(map[string]int) for i := 0; i < rows; i++ { row := KNN.Data.GetRowVector(i) eucdistance := KNN.ComputeDistance(row, vector) rownumbers[i] = eucdistance } sorted := util.SortIntMap(rownumbers) values := sorted[:K] for _, elem := range values { labels = append(labels, KNN.Labels[elem]) if _, ok := maxmap[KNN.Labels[elem]]; ok { maxmap[KNN.Labels[elem]] += 1 } else { maxmap[KNN.Labels[elem]] = 1 } } sortedlabels := util.SortStringMap(maxmap) label := sortedlabels[0] return label, values }