package main import ( "fmt" "github.com/gonum/matrix/mat64" data "github.com/sjwhitworth/golearn/data" knn "github.com/sjwhitworth/golearn/knn" util "github.com/sjwhitworth/golearn/utilities" ) func main() { //Parses the infamous Iris data. cols, rows, _, labels, data := data.ParseCsv("datasets/randomdata.csv", 2, []int{0, 1}) newlabels := util.ConvertLabelsToFloat(labels) //Initialises a new KNN classifier cls := knn.NewKnnRegressor("euclidean") cls.Fit(newlabels, data, rows, cols) for { //Creates a random array of N float64s between 0 and Y randArray := util.RandomArray(2, 100) //Initialises a vector with this array random := mat64.NewDense(1, 2, randArray) //Calculates the Euclidean distance and returns the most popular label outcome := cls.Predict(random, 3) fmt.Println(outcome) } }