package naive import ( "github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/filters" . "github.com/smartystreets/goconvey/convey" "testing" ) func TestNoFit(t *testing.T) { Convey("Given an empty BernoulliNaiveBayes", t, func() { nb := NewBernoulliNBClassifier() Convey("PredictOne should panic if Fit was not called", func() { testDoc := [][]byte{[]byte{0}, []byte{1}} So(func() { nb.PredictOne(testDoc) }, ShouldPanic) }) }) } func convertToBinary(src base.FixedDataGrid) base.FixedDataGrid { // Convert to binary b := filters.NewBinaryConvertFilter() attrs := base.NonClassAttributes(src) for _, a := range attrs { b.AddAttribute(a) } b.Train() ret := base.NewLazilyFilteredInstances(src, b) return ret } func TestSimple(t *testing.T) { Convey("Given a simple training data", t, func() { trainingData, err1 := base.ParseCSVToInstances("test/simple_train.csv", false) if err1 != nil { t.Error(err1) } nb := NewBernoulliNBClassifier() nb.Fit(convertToBinary(trainingData)) Convey("Check if Fit is working as expected", func() { Convey("All data needed for prior should be correctly calculated", func() { So(nb.classInstances["blue"], ShouldEqual, 2) So(nb.classInstances["red"], ShouldEqual, 2) So(nb.trainingInstances, ShouldEqual, 4) }) Convey("'red' conditional probabilities should be correct", func() { logCondProbTok0 := nb.condProb["red"][0] logCondProbTok1 := nb.condProb["red"][1] logCondProbTok2 := nb.condProb["red"][2] So(logCondProbTok0, ShouldAlmostEqual, 1.0) So(logCondProbTok1, ShouldAlmostEqual, 1.0/3.0) So(logCondProbTok2, ShouldAlmostEqual, 1.0) }) Convey("'blue' conditional probabilities should be correct", func() { logCondProbTok0 := nb.condProb["blue"][0] logCondProbTok1 := nb.condProb["blue"][1] logCondProbTok2 := nb.condProb["blue"][2] So(logCondProbTok0, ShouldAlmostEqual, 1.0) So(logCondProbTok1, ShouldAlmostEqual, 1.0) So(logCondProbTok2, ShouldAlmostEqual, 1.0/3.0) }) }) Convey("PredictOne should work as expected", func() { Convey("Using a document with different number of cols should panic", func() { testDoc := [][]byte{[]byte{0}, []byte{2}} So(func() { nb.PredictOne(testDoc) }, ShouldPanic) }) Convey("Token 1 should be a good predictor of the blue class", func() { testDoc := [][]byte{[]byte{0}, []byte{1}, []byte{0}} So(nb.PredictOne(testDoc), ShouldEqual, "blue") testDoc = [][]byte{[]byte{1}, []byte{1}, []byte{0}} So(nb.PredictOne(testDoc), ShouldEqual, "blue") }) Convey("Token 2 should be a good predictor of the red class", func() { testDoc := [][]byte{[]byte{0}, []byte{0}, []byte{1}} So(nb.PredictOne(testDoc), ShouldEqual, "red") testDoc = [][]byte{[]byte{1}, []byte{0}, []byte{1}} So(nb.PredictOne(testDoc), ShouldEqual, "red") }) }) Convey("Predict should work as expected", func() { testData, err := base.ParseCSVToInstances("test/simple_test.csv", false) if err != nil { t.Error(err) } predictions := nb.Predict(convertToBinary(testData)) Convey("All simple predicitions should be correct", func() { So(base.GetClass(predictions, 0), ShouldEqual, "blue") So(base.GetClass(predictions, 1), ShouldEqual, "red") So(base.GetClass(predictions, 2), ShouldEqual, "blue") So(base.GetClass(predictions, 3), ShouldEqual, "red") }) }) }) }