package trees import ( "fmt" base "github.com/sjwhitworth/golearn/base" "math/rand" ) type RandomTreeRuleGenerator struct { Attributes int internalRule InformationGainRuleGenerator } // So WEKA returns a couple of possible attributes and evaluates // the split criteria on each func (r *RandomTreeRuleGenerator) GenerateSplitAttribute(f *base.Instances) base.Attribute { // First step is to generate the random attributes that we'll consider maximumAttribute := f.GetAttributeCount() consideredAttributes := make([]int, r.Attributes) attrCounter := 0 for { if attrCounter >= r.Attributes { break } selectedAttribute := rand.Intn(maximumAttribute) if selectedAttribute != f.ClassIndex { consideredAttributes = append(consideredAttributes, selectedAttribute) attrCounter++ } } return r.internalRule.GetSplitAttributeFromSelection(consideredAttributes, f) } type RandomTree struct { base.BaseClassifier Root *DecisionTreeNode Rule *RandomTreeRuleGenerator } func NewRandomTree(attrs int) *RandomTree { return &RandomTree{ base.BaseClassifier{}, nil, &RandomTreeRuleGenerator{ attrs, InformationGainRuleGenerator{}, }, } } // Train builds a RandomTree suitable for prediction func (rt *RandomTree) Fit(from *base.Instances) { rt.Root = InferID3Tree(from, rt.Rule) } // Predict returns a set of Instances containing predictions func (rt *RandomTree) Predict(from *base.Instances) *base.Instances { return rt.Root.Predict(from) } func (rt *RandomTree) String() string { return fmt.Sprintf("RandomTree(%s)", rt.Root) } func (rt *RandomTree) Prune(with *base.Instances) { rt.Root.Prune(with) }