package clustering import ( "github.com/gonum/matrix/mat64" "github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/metrics/pairwise" "math/big" ) // DBSCANParameters describes the parameters of the density-based // clustering algorithm DBSCAN type DBSCANParameters struct { ClusterParameters // Eps represents the "reachability", or the maximum // distance any point can be before being considered for // inclusion. Eps float64 // MinCount represents how many points need to be // in a cluster before it is considered one. MinCount int } func regionQuery(p int, ret *big.Int, dist *mat64.Dense, eps float64) *big.Int { rows, _ := dist.Dims() // Return any points within the Eps neighbourhood for i := 0; i < rows; i++ { if dist.At(p, i) <= eps { ret = ret.SetBit(ret, i, 1) // Mark as neighbour } } return ret } func computePairwiseDistances(inst base.FixedDataGrid, attrs []base.Attribute, metric pairwise.PairwiseDistanceFunc) (*mat64.Dense, error) { // Compute pair-wise distances // First convert everything to floats mats, err := base.ConvertAllRowsToMat64(attrs, inst) if err != nil { return nil, err } // Next, do an n^2 computation of all pairwise distances _, rows := inst.Size() dist := mat64.NewDense(rows, rows, nil) for i := 0; i < rows; i++ { for j := i + 1; j < rows; j++ { d := metric.Distance(mats[i], mats[j]) dist.Set(i, j, d) dist.Set(j, i, d) } } return dist, nil } // DBSCAN clusters inst using the parameters allowed in and produces a ClusterId->[RowId] map func DBSCAN(inst base.FixedDataGrid, params DBSCANParameters) (ClusterMap, error) { // Compute the distances between each possible point dist, err := computePairwiseDistances(inst, params.Attributes, params.Metric) if err != nil { return nil, err } _, rows := inst.Size() clusterMap := make(map[int][]int) visited := big.NewInt(0) clustered := big.NewInt(0) // expandCluster adds P to a cluster C, visiting any neighbours expandCluster := func(p int, neighbours *big.Int, c int) { if clustered.Bit(p) == 1 { panic("Shouldn't happen!") } // Add this point to cluster C if _, ok := clusterMap[c]; !ok { clusterMap[c] = make([]int, 0) } clusterMap[c] = append(clusterMap[c], p) clustered.SetBit(clustered, p, 1) visited.SetBit(visited, p, 1) for i := 0; i < rows; i++ { reset := false if neighbours.Bit(i) == 0 { // Not a neighbour, so skip continue } if visited.Bit(i) == 0 { // not yet visited visited = visited.SetBit(visited, i, 1) // Mark as visited newNeighbours := big.NewInt(0) newNeighbours = regionQuery(i, newNeighbours, dist, params.Eps) if BitCount(newNeighbours) >= params.MinCount { neighbours = neighbours.Or(neighbours, newNeighbours) reset = true } } else { continue } if clustered.Bit(i) == 0 { clusterMap[c] = append(clusterMap[c], i) clustered = clustered.SetBit(clustered, i, 1) } if reset { i = 0 } } } c := 0 for i := 0; i < rows; i++ { if visited.Bit(i) == 1 { continue // Already visited here } visited.SetBit(visited, i, 1) neighbours := big.NewInt(0) neighbours = regionQuery(i, neighbours, dist, params.Eps) if BitCount(neighbours) < params.MinCount { // Noise, cluster 0 clustered = clustered.Or(clustered, neighbours) continue } c = c + 1 // Increment cluster count expandCluster(i, neighbours, c) } // Remove anything from the map which doesn't make // minimum points rmKeys := make([]int, 0) for id := range clusterMap { if len(clusterMap[id]) < params.MinCount { rmKeys = append(rmKeys, id) } } for _, r := range rmKeys { delete(clusterMap, r) } return ClusterMap(clusterMap), nil } // How many bits? func BitCount(n *big.Int) int { var count int = 0 for _, b := range n.Bytes() { count += int(bitCounts[b]) } return count } // The bit counts for each byte value (0 - 255). var bitCounts = []int8{ // Generated by Java BitCount of all values from 0 to 255 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, }